Query Relaxation
Using Malleable Schemas
Table Of Contents

1. Introduction
2. Limitations
3. Query Relaxation
4. Implementation Issues
5. Experiments
6. Conclusion
1. Introduction - Motivation

- Clean Schema
- Malleable Schema
- Unstructured data sources
- Structured data sources
1. Introduction - Motivation

xml is the standard for data exchange

xml search

body
title

author

first_name

sur_name

Person

John Gary

name

Pan

x

False

ISA-book

my paper

subject

email

attachment

contents

date

25.03.2006

Dear Sergey,
Please find the attached paper

... ...

Desktop Search

We have many
... ...

Doc

ISA-paper

True
1. Introduction - Goals / Aims

- Query Relaxation is for querying vaguely structured data by using malleable schemas.
- We can relax queries in order to find more results.
 - But also useful to find the correct result, when the original query would not retrieve it.
- The proposed approach furthermore ranks results.
 - According to the probability of satisfying the user's search.
- Combining database queries and Information Retrieval technologies.
1. Introduction - Problems / Challenges

• Challenge 1
 • Example
 - Q1: Select Person Where first-name = "Daniel"
 needs to be relaxed to
 - Q2: Select Person Where first-name = "Daniel"
 - OR name Contains "Daniel"

• We need to know that first-name is part of name

• Challenge 2: Find correlated schema elements, quantify these correlations
2. Limitations

- Entity-Relationship data model
 - Relations involve only two entities and have no attributes
- Malleable schema isn't concise
- For simplicity: containment only, conjunctions only
- Example
 - Q3 : Select Doc As E1 Where E1.title Contains “XML Query” And E1.ISA-paper Contains “True” And E1.author Contains E2 And E2.name Contains “Daniel”
3. Query Relaxation

- Relaxation

- $Q_3 = \{ E_1 \mid E_1.title \ni 'XML' \land E_1.title \ni 'Query' \land E_1.ISA - paper \ni 'True' \land E_1.author \ni E_2 \land E_2.name \ni 'Daniel' \}$

- can be relaxed to

- $Q_5 = \{ E_1 \mid E_1.title \ni 'XML' \land E_1.title \ni 'Query' \land E_1.ISA - paper \ni 'True' \land E_1.author \ni E_2 \land E_2.first - name \ni 'Daniel' \}$

- $Q_6 = \{ E_1 \mid E_1.subject \ni 'XML' \land E_1.subject \ni 'Query' \land E_1.ISA - paper \ni 'True' \land E_1.writer \ni E_2 \land E_2.name \ni 'Daniel' \}$
3. Query Relaxation

• Sorting results by their probabilities of relevance

 • Conditional probability
 \[P(\text{cancer}|\text{smoker}) = \frac{P(\text{smoker} \cap \text{cancer})}{P(\text{smoker})} \]

 • \(P(Q3|Q5) > P(Q3|Q6) \)

 • Computation is slow, can make independence assumptions to make it feasible
3. Query Relaxation

- Discovering Correlations and Duplicates

 - Brute force approach for estimating \(P(A|A') \)
 - Terms in attribute "first-name" also appear in attribute "name"
 - \(P(\text{name}|\text{first-name}) = 1 \)
 - \(P(\text{first-name}|\text{name}) = 0.5 \)

- Problem
 - Person entity with attributes "first-name" and "surname" in real-world will not have any entry in an attribute called "name"

- Conclusion
 - We need to find duplicates
3. Query Relaxation

- Discovering Correlations and Duplicates

<table>
<thead>
<tr>
<th></th>
<th>title</th>
<th>subject</th>
<th>author</th>
<th>writer</th>
<th>pub-date</th>
<th>rec-date</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>XML</td>
<td></td>
<td>Daniel</td>
<td></td>
<td>Jan 1999</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>XML</td>
<td></td>
<td>Daniel</td>
<td></td>
<td>Dec 2003</td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>DB</td>
<td></td>
<td>Ullman</td>
<td></td>
<td>Jul 1994</td>
<td></td>
</tr>
<tr>
<td>E4</td>
<td>DB</td>
<td></td>
<td>Ullman</td>
<td></td>
<td>Nov 2001</td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>AI</td>
<td></td>
<td>Stuart</td>
<td></td>
<td>Nov 2001</td>
<td></td>
</tr>
<tr>
<td>E6</td>
<td>Logic</td>
<td></td>
<td>Stuart</td>
<td></td>
<td>Nov 2001</td>
<td></td>
</tr>
</tbody>
</table>
3. Query Relaxation

• The DSCD Algorithm
 • Ignore relationships between entities
 • Consider only attribute correlations
 • Procedure
 - 1.) Duplicate detection
 • Based on current schema correlations, find all possible duplicates
 - 2.) Correlation detection
 • Based on current duplicates, reassess the schema correlations
 - 3.) If the schema correlations did not change in step 2, stop the process. Otherwise go to step 1
4. Implementation Issues

- Given n entities, m attributes
 - n^2 possible pairs of duplicates, m^2 possible pairs of attributes
- This is infeasible, so we use preselection
- Procedure of identifying and quantifying correlations:
 - 1. Preparation: Find all possible correlated pairs of attributes
 - 2. Verification: Perform DSCD algorithm
 - 3. Quantification: Identify more duplicates, use them for quantifying schema correlations
5. Experiments – Dataset and Setup

• Combining real world data from different sources
 • Movies provided by www.imdb.com
 • DVD/video items crawled from www.amazon.com
 • Both Describing similar data in different ways
 • Attributes very different but closely correlated

• Used System
 • Implementation in Java 5
 • PC with 2.7GHz CPU and 1GB RAM
 • MySQL 4.1.11
5. Experiments – Running Algorithm

• Preselection
 • Assuming no correlation between attributes of different types
 • Randomly picked up 1000 IMDB entries
 • Compared with Amazon entities using TF-IDF
 • Selected 100 most similar pairs as duplicate candidates
 • Most important and representative attributes used only

• Verification
 • Computed a confidence value for each schema correlation indicating the extent of belief that the match is correct
5. Experiments – Running Algorithm

• Quantification
 • Used K-Mean algorithm to automatically cluster the duplicate candidates into true and false duplicates, based on their confidence values
 • Set the median of the two clusters as a threshold for duplicate detection
 • Found 200 more duplicates that have confidence larger than the threshold
 • Calculated requested probabilities
5. Experiments – Results

| | Amazon | IMDB | confidence | P(A|I) |
|-------|--------|---------|------------|--------|
| 1 | Title | title | 0.701 | 0.619 |
| 2 | Actors | actors | 0.655 | 0.587 |
| 3 | Directors | directors | 0.642 | 0.753 |
| 4 | Languages | languages | 0.382 | 0.711 |
| 5 | Edit~Review | keywords | 0.132 | 0.086 |
| 6 | Directors | producers | 0.102 | 0.072 |
| 7 | Title | akatitles | 0.090 | 0.097 |
| 8 | ReleaseDate | year | 0.081 | 0.098 |
| 9 | Directors | writers | 0.080 | 0.173 |
| 10 | Actors | misc | 0.072 | 0.047 |
| 11 | Edit~Review | plots | 0.067 | 0.076 |
| 12 | Actors | writers | 0.061 | 0.098 |
| 13 | Directors | proddesigners | 0.059 | 0.002 |
| 14 | Directors | cinematographers | 0.054 | 0.023 |
| 15 | Title | movielines | 0.049 | 0.050 |
| 16 | Edit~Review | taglines | 0.046 | 0.056 |
| 17 | Actors | producers | 0.046 | 0.072 |
| 18 | Actors | directors | 0.043 | 0.094 |
| 19 | Audi~Rating | certificates | 0.042 | 0.136 |
| 20 | Actors | composers | 0.042 | 0.056 |
5. Experiments – Results

| IMDB | Amazon | confidence | P(I|A) |
|----------|-----------|------------|------|
| 1 | title | Title | 1.000| 0.923|
| 2 | actors | Actors | 0.794| 0.720|
| 3 | directors | Directors | 0.666| 0.792|
| 4 | akatitles | Title | 0.380| 0.303|
| 5 | languages | Languages | 0.348| 0.621|
| 6 | distributors | Publisher | 0.264| 0.335|
| 7 | distributors | Manufacturer | 0.264| 0.335|
| 8 | distributors | Label | 0.264| 0.335|
| 9 | distributors | Studio | 0.264| 0.335|
| 10 | movielinks | Title | 0.262| 0.296|
| 11 | producers | Directors | 0.152| 0.186|
| 12 | writers | Directors | 0.104| 0.259|
| 13 | year | ReleaseDate| 0.081| 0.098|
| 14 | technical | AspectRatio| 0.073| 0.108|
| 15 | actors | Creators | 0.067| 0.063|
| 16 | actors | Directors | 0.066| 0.135|
| 17 | proddesigners | Directors | 0.059| 0.003|
| 18 | certificates | Audi～Rating| 0.058| 0.220|
| 19 | cinematographers | Directors | 0.058| 0.029|
| 20 | plots | Edit～Review| 0.036| 0.052|
5. Experiments – Result Quality

- Sensitivity to true duplicates
6. Conclusion

- Query relaxation effective search using malleable schemas
- Probabilistic model
- DSCD Algorithm
- Experimental study using real dataset
- For future research
 - storage management, query interface and flexible mechanism for updating malleable schemas