Formal Concept Analysis

III Knowledge Discovery

Robert Jäschke
Asmelash Teka Hadgu

FG Wissensbasierte Systeme/L3S Research Center
Leibniz Universität Hannover

slides based on a lecture by Prof. Gerd Stumme
6 Background Knowledge

- Simplifying Implications of the Stem Base
- Optimizing the Computation of the Stem Base
- Optimizing the Computation of the Stem Base
- “Harmless” Background Knowledge
- Incomplete Knowledge About Objects
- “Difficult” Background Knowledge
- Background Knowledge of Scaled Contexts
Simplifying Implications of the Stem Base

- First of all: the stem base is non-redundant, i.e., we can not remove implications.
- But: redundancy in the premise or the conclusion can be removed.

- **One** redundant attribute in the premise or the conclusion we can just remove:
 - Since \(a \rightarrow b, c \) we can simplify \(d, e \rightarrow a, b, c \) to \(d, e \rightarrow a, b \).

- **Several** redundant attributes can not always be removed:
 - \(a \) and \(c \) can not be removed from \(d, e \rightarrow a, b, c \).
Assume that we have computed the implication \(\{c, d\} \rightarrow \{a, b, e\} \) (of the attribute set \(\{a, b, c, d, e\} \)):

- then \texttt{Next Closure} checks \(\{c, d\} <_e \{a, b, c, d, e\} \) — which fails
- \textit{improvement}: directly continue with \(i := b \)

Similar, after the implication \(\{a\} \rightarrow \{b, c\} \):

- \texttt{Next Closure} is unsuccessfully checking \(\{a\} <_e \{a, b, c, e\} \), \(\{a\} <_d \{a, b, c, d\} \), \(\{a\} <_c \{a, b, c\} \)
- \textit{improvement}: directly continue with \(A := \{a, b, c\} \)
In general: Let \(k := \max \mathcal{L}^\cdot(A + i) \) and \(l := \min(\mathcal{L}^\cdot(A + i))'' \setminus \mathcal{L}^\cdot(A + i) \)

- \(l < k \): ignore all \(i > k \) and continue with \(i < k \)
 - In the example \(\{ c, d \} \rightarrow \{ a, b, e \} \):
 \(d = \max\{c, d\}, a = \min\{a, b, c, d, e\} \setminus \{c, d\} \) – ignore \(e \) and \(d \)

- \(k < l \): continue directly with \(A := A'' \)
 - Proposition: If \(P \) is a pseudo-intent and no element of \(P'' \setminus P \) is smaller than any element of \(P \), then \(P \) is the lexically largest pseudo-intent with the closure \(P'' \).
 - In the example \(\{ a \} \rightarrow \{ b, c \} \) we can continue with \(\{a\}'' = \{a, b, c\} \), instead of \(\{a\} \) (otherwise we would unsuccessfully try \(i := e, d, c \)
Background Knowledge

A not so nice example:

Possible outcomes of a driving test

<table>
<thead>
<tr>
<th></th>
<th>theory</th>
<th>driving</th>
<th>license</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pass</td>
<td>pass</td>
<td>pass</td>
</tr>
<tr>
<td></td>
<td>fail</td>
<td>fail</td>
<td>fail</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>theory</th>
<th>driving</th>
<th>license</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>2</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>3</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>4</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

The stem base for the context

- driving = fail → license = fail
- theory = fail → license = fail
- license = fail, driving = pass → theory = fail
- license = fail, theory = pass → driving = fail
- driving = pass, theory = pass → license = pass
- license = pass → driving = pass, theory = pass
- license = fail, theory = fail, driving = pass, driving = fail → ⊥
- license = fail, theory = fail, theory = pass, driving = fail → ⊥

Wouldn’t we rather expect

theory = pass, driving = pass ↔ license = pass?
This does not work, because we intuitively assume that “fail” is the negation of “pass”, i.e., we assume that

\[\text{pass, fail} \rightarrow \bot \text{ and } \top \rightarrow \text{pass or fail} \]

hold as \textit{background knowledge} for all parts of the test.

- \textit{pass, fail} \rightarrow \bot \text{ is an implication}
- \top \rightarrow \text{pass or fail} \text{ is a clause}
Can we add (during attribute exploration) further (correct) objects and implications?

- Yes, we can add objects at any time!
- We can also add implications.
- **But:** the computed implications are then not the stem base of the context \((G, M, I)\)!
- Instead, we get a base *relative* to the manually added implications.
- If we add implications during exploration, the resulting set of implications is not necessarily redundant.
“Harmless” Background Knowledge

If we include \(\text{pass, fail} \rightarrow \bot \) (i.e., the three implications “theory = pass, theory = fail \rightarrow \bot”, etc.) as background knowledge, we get a base with six implications:

<table>
<thead>
<tr>
<th></th>
<th>theory</th>
<th></th>
<th>driving</th>
<th></th>
<th>license</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pass</td>
<td>fail</td>
<td>pass</td>
<td>fail</td>
<td>pass</td>
</tr>
<tr>
<td>1</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
</tr>
<tr>
<td>2</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(\times)</td>
<td>(\times)</td>
<td>(\times)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- \(\text{driving} = \text{fail} \rightarrow \text{license} = \text{fail}\)
- \(\text{theory} = \text{fail} \rightarrow \text{license} = \text{fail}\)
- \(\text{license} = \text{fail}, \text{driving} = \text{pass} \rightarrow \text{theory} = \text{fail}\)
- \(\text{license} = \text{fail}, \text{theory} = \text{pass} \rightarrow \text{driving} = \text{fail}\)
- \(\text{driving} = \text{pass}, \text{theory} = \text{pass} \rightarrow \text{license} = \text{pass}\)
- \(\text{license} = \text{pass} \rightarrow \text{driving} = \text{pass}, \text{theory} = \text{pass}\)
- \(\text{license} = \text{fail}, \text{theory} = \text{fail}, \text{driving} = \text{pass} \rightarrow \bot\)
- \(\text{license} = \text{fail}, \text{theory} = \text{fail}, \text{theory} = \text{pass}, \text{driving} = \text{fail} \rightarrow \bot\)
Incomplete Knowledge About Objects

Previously:

Is it true, that when object has attribute(s) >10Mill Einwohner, that it also has attribute(s) EU, NATO?

- Yes
- No
- Stop Attribute Exploration

No, the Ukraine is not a member of the EU!

But is it part of the Schengen area?

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>EU</td>
<td>Euro</td>
<td>Schengen</td>
<td>NATO</td>
<td>Monarchie</td>
<td>Binnenland</td>
<td>>10Mill E...</td>
<td></td>
</tr>
<tr>
<td>Ukraine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Provide counterexample

Accept Implication

Stop
Incomplete Knowledge About Objects

First, we start with a context $\mathbb{E} = (E, M, J)$ with examples E of a context (G, M, I) (i.e., $E \subseteq G$ and $J := I \cap (E \times M)$)

Then, we replace \mathbb{E} by $\mathbb{E}_+ = (E, M, J_+)$ and $\mathbb{E}_? = (E, M, J?)$ with $J_+ \subseteq J \subseteq J?$

$(\mathbb{E}_+, \mathbb{E}_?)$ is called partial formal context

For each example object $e \in E$ we have then three sets of attributes:

- e^+ – the attributes e is known to have
- $e^? \supseteq g^+$ – the attributes e may have
- $e^- := M \setminus g?$ – the attributes e is known not to have
Incomplete Knowledge About Objects

- Instead of a complete example \(e \), it is sufficient to supply \(e^+ \) and \(e^- \).
- \(e^+ \) und \(e^- := M \setminus e^- \) are added to \(E_+ \) and \(E_- \), respectively.
- For \(B := L^\circ (A + i) \) we compute instead of \(B'' \):

\[
B^+ := \bigcap \{ e^- \mid e \in E, B \subseteq e^+ \}
\]

(that’s not a closure operator!)
- Any modification of the list \(L \) leads to a modification of \(E_+ \) and \(E_- \):
 - for each \(e \in E \) we replace \(e^+ \) by \(L(e^+) \)
 - for each \(e \in E \) we successively remove those elements \(m \) which do not satisfy the condition \(L(e^+ \cup \{m\}) \subseteq e^- \).
Upon completion of the algorithm we have that

- \mathcal{L} is the stem base of (G, M, I)
- $e^{++} = e^{II}$

On the blackboard: Countries of Europe
- as attributes this time only EU, €, Schengen, NATO
- Let's start with Germany . . .
Reminder:

<table>
<thead>
<tr>
<th>Possible outcomes of a driving test</th>
<th>theory</th>
<th>driving</th>
<th>license</th>
</tr>
</thead>
<tbody>
<tr>
<td>pass</td>
<td>fail</td>
<td>pass</td>
<td>fail</td>
</tr>
<tr>
<td>1</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>2</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>3</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>4</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

The stem base for the context:

- driving = fail → license = fail
- theory = fail → license = fail
- license = fail, driving = pass → theory = fail
- license = fail, theory = pass → driving = fail
- driving = pass, theory = pass → license = pass
- license = pass → driving = pass, theory = pass
- license = fail, theory = fail, driving = pass, driving = fail → ⊥
- license = fail, theory = fail, theory = pass, driving = fail → ⊥

We know beforehand: pass, fail → ⊥ and ⊤ → pass or fail, i.e., the background knowledge contains a clause.
Def.: A *clause* is a pair of subsets

\[A, B \subseteq M, \text{ written as } A \rightarrow B \]

A clause *holds* in a formal context \((G, M, I)\), iff for all \(g \in G\)

\[A \subseteq g' \text{ implies } B \cap g' \neq \emptyset \]

i.e., *every object that has all attributes from \(A\) has at least one attribute from \(B\)*
clauses are more expressive and powerful than implications

actually, every propositional formula is logically equivalent to a conjunction of clauses ("conjunctive normal form")

deciding if a given clause follows from a given list of clauses is hard (\(NP\)-complete)

it is even \(NP\)-complete to infer if a given implication can be inferred from a given list of clauses

thus: as easy it is to compute the stem base, to find a base for clauses is not so easy
“Difficult” Background Knowledge

Rep.: pseudo-intent, pseudo-closure

On the blackboard: **Def.** pseudo-model

On the blackboard: example
On the blackboard: **Def.** cumulated clause
Background Knowledge of Scaled Contexts