Data Mining I

Summer semester 2019

Lecture 10: Clustering – 2: Density-based clustering

Lectures: Prof. Dr. Eirini Ntoutsi

TAs: Tai Le Quy, Vasileios Iosifidis, Maximilian Idahl, Shaheer Asghar
Clustering topics covered in DM1

1. Partitioning-based clustering
 - kMeans, kMedoids

2. Density-based clustering
 - DBSCAN

3. Model-based clustering
 - EM

4. Hierarchical clustering

5. Clustering evaluation
Density based clustering

- Clusters are regions of high density surrounded by regions of low density (noise)
- Clustering based on density (local cluster criterion), such as density-connected points

- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters as termination condition

- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD’96)
 - DENCLUE: Hinneburg & D. Keim (KDD’98)
 - CLIQUE: Agrawal, et al. (SIGMOD’98) (more grid-based)
The notion of density

- **Density:**
 - Density is measured locally in the **Eps-neighborhood** (or **ε-neighborhood**) of each point.
 - Density = number of points within a specified radius Eps (point itself included).

- Density depends on the specified **radius Eps**
 - In an extreme small radius, all points will have a density of 1 (only themselves).
 - In an extreme large radius, all points will have a density of \(N\) (the size of the dataset).
DBSCAN basic concepts

- Consider a dataset D of objects to be clustered
- Two parameters:
 - Eps (or ε): Maximum radius of the neighbourhood
 - MinPts: Minimum number of points in an Eps-neighbourhood of that point

- Eps-neighbourhood of a point p in D
 - $N_{\text{Eps}}(p)$: \{ q belongs to D | $\text{dist}(p,q) \leq \text{Eps}$ \}

The Eps-neighbourhood of p
Let D be a dataset. Given a radius parameter Eps and a density parameter $MinPts$ we can distinguish between:

- **Core points**

 A point is a core point if it has more than a specified number of points ($MinPts$) within a specified radius Eps, i.e.,:

 $|N_{Eps}(p) = \{q \mid dist(p,q) \leq Eps \}| \geq MinPts$

 - These are points that are at the interior of a cluster

- **Border points**

 A border point has fewer than $MinPts$ within Eps radius, but it is in the neighborhood of a core point

 - those are points that belong to the periphery of a cluster

- **Noise points**

 neither a core point nor a border point
Core, Border and Noise points

Original points

Point types: core, border and noise

- Core points are points that are at the interior of a cluster
- Border points belong to the periphery of a cluster
- Noise points do not belong to any cluster
Direct reachability

- **Directly density-reachable:** A point p is directly density-reachable from a point q w.r.t. Eps, $MinPts$ if
 - p belongs to $N_{Eps}(q)$ and
 - q is a core point, i.e., $|N_{Eps}(q)| \geq MinPts$
Reachability

- **Density-reachable:**
 - A point \(p \) is density-reachable from a point \(q \) w.r.t. \(Eps, MinPts \) if there is a chain of points \(p_1, \ldots, p_n \) such that \(p_1 = q, p_n = p \) such that \(p_{i+1} \) is directly density-reachable from \(p_i \)
 - not a symmetric relation
Connectivity

- **Density-connected**
 - A point p is density-connected to a point q w.r.t. Eps, $MinPts$ if there is a point o such that both, p and q are density-reachable from o w.r.t. Eps and $MinPts$
 - Density-connectedness is symmetric
Cluster

- A cluster is a **maximal set** of density-connected points

- A cluster satisfies two properties:
 - All points within the cluster are mutually density-connected.
 - If a point is density-reachable from any point of the cluster, it is part of the cluster as well.
DBSCAN algorithm

- Arbitrary select a point p to start
- Retrieve all points density-reachable from p w.r.t. Eps and $MinPts$.
- If p is a core point, a cluster is formed starting with p and by expanding through its neighbors.
- If p is a border point, no points are density-reachable from p and DBSCAN visits the next point of the database.
- Continue the process until all of the points have been processed.
DBSCAN pseudocode I

DBSCAN(Dataset DB, Real Eps, Integer MinPts)

// initially all objects are unclassified,
// o.ClId = unclassified for all o ∈ DB

ClusterId := nextId(NOISE);
for i from 1 to |DB| do
 Object := DB.get(i);
 if Object.ClId = unclassified then
 if ExpandCluster(DB, Object, ClusterId, Eps, MinPts)
 then ClusterId:=nextId(ClusterId);
ExpandCluster(DB, StartObject, ClusterId, Eps, MinPts): Boolean

seeds:= RQ(StartObjekt, Eps);
if |seeds| < MinPts then // StartObject is not a core object
 StartObject.ClId := NOISE;
 return false;
else // else: StartObject is a core object
 forall o ∈ seeds do o.ClId := ClusterId;
 remove StartObject from seeds;
 while seeds ≠ Empty do
 select an object o from the set of seeds;
 Neighborhood := RQ(o, Eps);
 if |Neighborhood| ≥ MinPts then // o is a core object
 for i from 1 to |Neighborhood| do
 p := Neighborhood.get(i);
 if p.ClId in {UNCLASSIFIED, NOISE} then
 if p.ClId = UNCLASSIFIED then
 add p to the seeds;
 p.ClId := ClusterId;
 end if
 end if
 end for;
 end if
 remove o from the seeds;
 end while;
 return true;
DBSCAN: An example

MinPts = 5

1. Check the ε-neighborhood of p;
2. If p has less than MinPts neighbors then mark p as outlier and continue with the next object
3. Otherwise mark p as processed and put all the neighbors in cluster C_1

1. Check the unprocessed objects in C_1
2. If no core object, return C_1
3. Otherwise, randomly pick up one core object p_1, mark p_1 as processed, and put all unprocessed neighbors of p_1 in cluster C_1

Source: http://www.cse.buffalo.edu/faculty/azhang/cse601/density-based.ppt
Short break (5’)

Is the result of DBSCAN dependent on the order in which we visit the data?

- Think for 1’
- Discuss with your neighbours
- Discuss in the class
When DBSCAN works well?

- Resistant to noise
- Can handle clusters of different shapes and sizes
When DBSCAN does not work well?

- DBScan can fail to identify clusters of varying densities
- Problems in high-dimensional data due to curse of dimensionality
DBSCAN: determining Eps and MinPts

Intuition

- for points in a cluster, their k^{th} nearest neighbors are at roughly the same distance
- whereas noise points have the k^{th} nearest neighbor at farther distance

• So, the idea is to calculate, the distance of every point to its k nearest neighbor. The value of k will be specified by the user and corresponds to MinPts.

• Next, these k-distances are plotted in an ascending order. The aim is to determine the “knee”, which corresponds to the optimal eps parameter.

 • A knee corresponds to a threshold where a sharp change occurs along the k-distance curve.”

DBSCAN: determining Eps and MinPts

The sorted k-dist graph

Ordering points to identify the clustering structure (OPTICS algorithm)

All points with a higher k-dist value (left of the threshold) are considered to be noise, all other points (right of the threshold) are assigned to some cluster.

From the DBSCAN paper: “our experiments indicate that the k-dist graphs for k > 4 do not significantly differ from the 4-dist graph and, furthermore, they need considerably more computation. Therefore, we eliminate the parameter MinPts by setting it to 4 for all databases (for 2-dimensional data).”
Short break (3’)

What is the complexity of DBSCAN?

- Think for 1’
- Discuss with your neighbours
- Discuss in the class
Complexity

- For a dataset D consisting of n points, the time complexity of DBSCAN is
 - $O(n \times \text{time to find points in the Eps-neighborhood})$
- Worst case $O(n^2)$
- In low-dimensional spaces $O(n \log n)$;
 - efficient data structures (e.g., kd-trees) allow for efficient retrieval of all points within a given distance of a specified point
Things you should know from this lecture

- Density-based clustering
- DBSCAN
- Core, border, noisy points
Grid-based methods

- Another density-based clustering approach.
- A grid structure is used to capture the density of the dataset.
 - A cluster is a set of connected dense cells
 - STING (VLDB’97), WaveCluster (VLDB’98),...
 - CLIQUE (SIGMOD’98) for high-dimensional data
- Appealing features
 - No assumption on the number of clusters
 - Discovering clusters of arbitrary shapes
 - Ability to handle outliers
- But
 - The result depends on the grid parameters (cell size and cell density, which are typically global)
 - Approaches exist for dynamic size grids
Homework/ tutorial

- Homework
 - Try DBSCAN (e.g., in ELKI: https://elki-project.github.io/howto/clustering, SciKit: http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html or, write your own implementation) using your own GPS data for 1 week, 1 month etc
 - Are there any clear patterns in your data?

- Readings: