Data Mining I

Summer semester 2019

Lecture 2: Getting to know your data

Lectures: Prof. Dr. Eirini Ntoutsi

TAs: Tai Le Quy, Vasileios Iosifidis, Maximilian Idahl, Shaheer Asghar, Wazed Ali
Recap from previous lecture

- KDD definition
- KDD process
- DM step
- Supervised (or predictive) vs Unsupervised (or descriptive) learning
- Main DM tasks
 - Clustering: partitioning in groups of similar objects
 - Classification: predict class attribute from input attributes, class is categorical
 - Regression: predict class attribute from input attributes, class is continuous
 - Association rules mining: find associations between attributes
 - Outlier detection: identify non-typical data
Warming up (5’) – Learning from student data

- Continuing our example from last lecture regarding student data and what sort of knowledge one can extract upon such sort of data

- If students are the learning instances, what sort of features could I use to describe each of them?
- What could be the feedback/label for the learning model (if any)?

- What could be a supervised learning task?
- What could be an unsupervised learning task?
- What could be an outlier detection task?
Outline

- Data preprocessing
 - Decomposing a dataset: instances and features
 - Basic data descriptors
 - Proximity (similarity, distance) measures
 - Feature transformation for text data
 - Data Visualization
- Homework/Tutorial
- Things you should know from this lecture
Recap: The KDD process and the Data Mining step

[Fayyad, Piatetsky-Shapiro & Smyth, 1996]
Why data preprocessing?

- Real world data is noisy, incomplete and inconsistent:
 - **Noisy**: errors/outliers
 - erroneous values: e.g., $salary = -10K$
 - unexpected values: e.g., $salary = 100K$ when the rest dataset lies in [30K-50K]
 - **Incomplete**: missing data
 - missing values: e.g., $occupation=\ "\$
 - missing attributes of interest: e.g., no information on occupation
 - **Inconsistent**: discrepancies in the data
 - e.g., $student\ grade$ ranges between different universities might differ, in DE [1-5], in GR [0-10]

- "Dirty" data \Rightarrow poor mining results
- Data preprocessing is necessary for improving the quality of the mining results!
- Not a focus of this class!
Major tasks in data preprocessing

- **Data integration:**
 - Integration of multiple databases, data warehouses, or files (entity identification)

- **Data cleaning:**
 - Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies

- **Data transformation:**
 - Normalization in a given range, e.g., [0-1]
 - Generalization through some concept hierarchy

- **Data reduction:**
 - Duplicate elimination
 - Aggregation, e.g., from 12 monthly salaries to average salary per month.
 - Dimensionality reduction, through e.g., PCA, autoencoders

More on this on the “Data Mining II” course

Data Mining I @SS19, Lecture 2: Getting to know your data
Outline

- Data preprocessing

 - Decomposing a dataset: instances and features
 - Basic data descriptors
 - Proximity (similarity, distance) measures
 - Feature transformation for text data
 - Data Visualization

- Homework/Tutorial

- Things you should know from this lecture
Datasets = instances + features

- Datasets consists of **instances** (also known as **examples** or objects or observations)
 - e.g., in a university database: *students, professors, courses, grades,*...
 - e.g., in a library database: *books, users, loans, publishers,*
 - e.g., in a movie database: *movies, actors, director,*

- Instances are described through **features** (also known as **attributes** or **variables** or **dimensions**)
 - E.g. a course is described in terms of a *title, description, lecturer, teaching frequency* etc.

- The feedback feature (for supervised learning) is called the **class attribute**
Data matrix

- Data can often be represented or abstracted as an $D = n \times d$ data matrix
 - n rows corresponding to instances
 - d columns correspond to features, feature set F

- The number of instances n is referred to as the size or cardinality of the dataset, $n = |D|$
- The number of features d is referred to as the dimensionality of the dataset
- Subset of the data: $D' \subseteq D$
- Subspace $F' \subseteq F$
 - Subspace projection
An example from the iris dataset

<table>
<thead>
<tr>
<th></th>
<th>Sepal length</th>
<th>Sepal width</th>
<th>Petal length</th>
<th>Petal width</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>5.9</td>
<td>3.0</td>
<td>4.2</td>
<td>1.5</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>x2</td>
<td>6.9</td>
<td>3.1</td>
<td>4.9</td>
<td>1.5</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>x3</td>
<td>6.6</td>
<td>2.9</td>
<td>4.6</td>
<td>1.3</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>x4</td>
<td>4.6</td>
<td>3.2</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>x5</td>
<td>6.0</td>
<td>2.2</td>
<td>4.0</td>
<td>1.0</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>x6</td>
<td>4.7</td>
<td>3.2</td>
<td>1.3</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>x7</td>
<td>6.5</td>
<td>3.0</td>
<td>5.8</td>
<td>2.2</td>
<td>Iris-virginica</td>
</tr>
<tr>
<td>x8</td>
<td>5.8</td>
<td>2.7</td>
<td>5.1</td>
<td>1.9</td>
<td>Iris-virginica</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>x149</td>
<td>7.7</td>
<td>3.8</td>
<td>6.7</td>
<td>2.2</td>
<td>Iris-virginica</td>
</tr>
<tr>
<td>x150</td>
<td>5.1</td>
<td>3.4</td>
<td>1.5</td>
<td>0.2</td>
<td>Iris-setosa</td>
</tr>
</tbody>
</table>
Basic feature types

- **Binary/ Dichotomous variables**

- **Categorical (qualitative)**
 - Binary variables
 - Nominal variables
 - Ordinal variables

- **Numeric variables (quantitative)**
 - Interval-scale variables
 - Ratio-scaled variables
Binary/ Dichotomous variables

- The attribute can take two values, \{0,1\} or \{true,false\}
 - usually, 0 means absence, 1 means presence
 - e.g., smoker variable: 1 → smoker, 0 → non-smoker
 - e.g., true (1), false (0)

- Are both values equally important?
 - **Symmetric binary**: both outcomes are equally important
 - e.g., gender (male, female)
 - **Asymmetric binary**: outcomes are not equally important
 - e.g., medical tests (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)

Data Table Example

<table>
<thead>
<tr>
<th>Person</th>
<th>isSmoker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eirini</td>
<td>0</td>
</tr>
<tr>
<td>Erich</td>
<td>1</td>
</tr>
<tr>
<td>Kostas</td>
<td>0</td>
</tr>
<tr>
<td>Jane</td>
<td>0</td>
</tr>
<tr>
<td>Emily</td>
<td>1</td>
</tr>
<tr>
<td>Markus</td>
<td>0</td>
</tr>
</tbody>
</table>

What are the binary variables in the example below?

<table>
<thead>
<tr>
<th>ID</th>
<th>Gender</th>
<th>Height(cm)</th>
<th>Weight (kg)</th>
<th>Hair Color</th>
<th>Blood Group</th>
<th>Glasses</th>
<th>Smoker</th>
<th>GGS 787 Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Female</td>
<td>175</td>
<td>60</td>
<td>brown</td>
<td>A</td>
<td>no</td>
<td>frequent</td>
<td>A+</td>
</tr>
<tr>
<td>68</td>
<td>Female</td>
<td>176</td>
<td>52</td>
<td>blond</td>
<td>AB</td>
<td>yes</td>
<td>frequent</td>
<td>A</td>
</tr>
<tr>
<td>69</td>
<td>Female</td>
<td>176</td>
<td>63</td>
<td>black</td>
<td>A</td>
<td>yes</td>
<td>casual</td>
<td>A+</td>
</tr>
<tr>
<td>70</td>
<td>Female</td>
<td>179</td>
<td>65</td>
<td>brown</td>
<td>0</td>
<td>yes</td>
<td>no</td>
<td>B</td>
</tr>
</tbody>
</table>
Categorical: Nominal variables

- The attribute can take values within a set of M categories/ states (binary variables are a special case)
 - No ordering in the categories/ states.
 - Only distinctness relationships apply, i.e.,
 - equal (=) and
 - different (\neq)
 - Examples:
 - Colors = \{brown, green, blue, ..., gray\},
 - Occupation = \{engineer, doctor, teacher, ..., driver\}

<table>
<thead>
<tr>
<th>Person</th>
<th>Occupation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eirini</td>
<td>archaeologist</td>
</tr>
<tr>
<td>Erich</td>
<td>engineer</td>
</tr>
<tr>
<td>Kostas</td>
<td>doctor</td>
</tr>
<tr>
<td>Jane</td>
<td>engineer</td>
</tr>
<tr>
<td>Emily</td>
<td>teacher</td>
</tr>
<tr>
<td>Markus</td>
<td>driver</td>
</tr>
</tbody>
</table>

Operations that can be applied: $=, \neq$

What are the categorical variables in the example below?

<table>
<thead>
<tr>
<th>ID</th>
<th>Gender</th>
<th>Height(cm)</th>
<th>Weight (kg)</th>
<th>Hair Color</th>
<th>Blood Group</th>
<th>Glasses</th>
<th>Smoker</th>
<th>GGS 787 Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Female</td>
<td>175</td>
<td>60</td>
<td>brown</td>
<td>A</td>
<td>no</td>
<td>frequent</td>
<td>A+</td>
</tr>
<tr>
<td>68</td>
<td>Female</td>
<td>176</td>
<td>52</td>
<td>blond</td>
<td>AB</td>
<td>yes</td>
<td>frequent</td>
<td>A</td>
</tr>
<tr>
<td>69</td>
<td>Female</td>
<td>176</td>
<td>63</td>
<td>black</td>
<td>A</td>
<td>yes</td>
<td>casual</td>
<td>A+</td>
</tr>
<tr>
<td>70</td>
<td>Female</td>
<td>172</td>
<td>65</td>
<td>brown</td>
<td>B</td>
<td>yes</td>
<td>no</td>
<td>B</td>
</tr>
</tbody>
</table>
Categorical: Ordinal variables

- Similar to nominal variables, but the *M* states are *ordered/ ranked* in a meaningful way.
 - There is an *ordering* between the values.
 - Allows to apply order relationships, i.e., >, ≥, <, ≤
 - However, the *difference* and *ratio* between these values has no meaning.
 - E.g., 5*-3* is the same as 3*-1* or, 4* is 2 times better than 2*?
 - Examples:
 - *School grades*: \{A,B,C,D,F\}
 - *Movie ratings*: \{hate, dislike, indifferent, like, love\}
 - Also, *movie ratings*: \{*\, **\, ***\, ****\, *****\}
 - Also, *movie ratings*: \{1, 2, 3, 4, 5\}
 - *Medals* = \{bronze, silver, gold\}

Data Mining I @SS19, Lecture 2: Getting to know your data

<table>
<thead>
<tr>
<th>Person</th>
<th>A beautiful mind</th>
<th>Titanic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eirini</td>
<td>5*</td>
<td>3*</td>
</tr>
<tr>
<td>Erich</td>
<td>5*</td>
<td>1*</td>
</tr>
<tr>
<td>Kostas</td>
<td>3*</td>
<td>3*</td>
</tr>
<tr>
<td>Jane</td>
<td>1*</td>
<td>2*</td>
</tr>
<tr>
<td>Emily</td>
<td>2*</td>
<td>5*</td>
</tr>
<tr>
<td>Markus</td>
<td>4*</td>
<td>3*</td>
</tr>
</tbody>
</table>

Operations that can be applied: =, ≠, <, >

What are the ordinal variables in the example below?
Numeric: Interval-scale variables

- **Differences** between values are meaningful
 - The difference between 90° and 100° temperature is the same as the difference between 40° and 50° temperature.

- **Examples:**
 - *Calendar dates*, *Temperature* in Farenheit or Celsius, ...

- **Ratio** still has no meaning
 - A temperature of 2° Celsius is not much different than a temperature of 1° Celsius.
 - The issue is that the 0° point of the Celsius scale is in a physical sense arbitrary and therefore the ratio of two Celsius temperatures is not physically meaningful.

Operations that can be applied: $=, \neq, <, >, +, -$
 Numeric: Ratio-scale variables

- Both differences and ratios have a meaning
 - E.g., a 100 kgs person is twice heavy as a 50 kgs person.
 - E.g., a 50 years old person is twice old as a 25 years old person.
- Meaningful (unique and non-arbitrary) zero value
- Examples:
 - *age, weight, length, number of sales*
 - *temperature in Kelvin*
 - When measured on the Kelvin scale, a temperature of 2° is, in a physical meaningful way, twice that of a 1°.
 - The zero value is absolute 0, represents the complete absence of molecular motion

What are the ratio-scale variables in the example below?

<table>
<thead>
<tr>
<th>ID</th>
<th>Gender</th>
<th>Height(cm)</th>
<th>Weight (kg)</th>
<th>Hair Color</th>
<th>Blood Group</th>
<th>Glasses</th>
<th>Smoker</th>
<th>GSS 787 Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Female</td>
<td>175</td>
<td>60</td>
<td>brown</td>
<td>A</td>
<td>no</td>
<td>frequent</td>
<td>A+</td>
</tr>
<tr>
<td>68</td>
<td>Female</td>
<td>176</td>
<td>52</td>
<td>blond</td>
<td>AB</td>
<td>no</td>
<td>frequent</td>
<td>B</td>
</tr>
<tr>
<td>69</td>
<td>Female</td>
<td>176</td>
<td>63</td>
<td>black</td>
<td>A</td>
<td>yes</td>
<td>casual</td>
<td>A+</td>
</tr>
<tr>
<td>70</td>
<td>Female</td>
<td>179</td>
<td>65</td>
<td>brown</td>
<td>n</td>
<td>yes</td>
<td>no</td>
<td>B</td>
</tr>
</tbody>
</table>

Operations that can be applied:

=, ≠, <, >, +, -, \times, \div
Table 1.1: Levels of Measurement, Arithmetic Operations

<table>
<thead>
<tr>
<th>Stevens’s Levels of Measurement</th>
<th>Logical and Arithmetic Operations That Can Be Applied (According to Stevens)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>=, ≠</td>
</tr>
<tr>
<td>Ordinal</td>
<td>=, ≠, <, ></td>
</tr>
<tr>
<td>Interval</td>
<td>=, ≠, <, >, +, –</td>
</tr>
<tr>
<td>Ratio</td>
<td>=, ≠, <, >, +, –, ×, ÷</td>
</tr>
</tbody>
</table>

Source: https://www.sagepub.com/sites/default/files/upm-binaries/19708_6.pdf
How do we extract features?

- In many cases, we are not given a feature description of the data, so we have to extract the features.
- Feature extraction depends on the application.
 - Images:
 Color histograms: distribution of colors in the image
 - Gene databases:
 gene expression level
 - Text databases:
 Word frequencies
- But, the feature-based approach allows uniform treatment of instances from different applications.
 - Traditionally features were handcrafted.
 - Nowadays, features can be also learned (e.g., through DNNs).
 - Hybrid approaches also exist that combine handcrafted with learned features.
Short break (5’)

Why we care about the feature types?

- Think for 1’
- Discuss with your neighbours
- Discuss in the class
Data pre-processing

Decomposing a dataset: instances and features

Basic data descriptors

Proximity (similarity, distance) measures

Feature transformation for text data

Data Visualization

Homework/ Tutorial

Things you should know from this lecture
Univariate vs bivariate vs multivariate analysis

- Univariate analysis: analysis of a single attribute
- Bivariate analysis: the simultaneous analysis of two attributes
- Multivariate analysis: the simultaneous analysis of more than two attributes
Univariate descriptors: measures of central tendency

Let \(x_1, \ldots, x_n\) be a random sample of an attribute \(X\) (the dataset projected w.r.t. \(X\)). Measures of central tendency of \(X\) include:

- **(Arithmetic) mean/ center/ average:**
 \[
 \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i
 \]

- **Weighted average:**
 \[
 \bar{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}
 \]

What is the mean of:

3, 8, 3, 4, 3, 6, 4, 2, 3
Univariate descriptors: measures of central tendency

- Mean is greatly influenced by outliers, a more robust measure is median

 \[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

- Median: the central element in ascending ordering
 - Middle value if odd number of values, or average of the middle two values otherwise

What is the median of:

3, 8, 3, 4, 3, 6, 4, 2, 3
Univariate descriptors: measures of central tendency

- **Mode**: the value that occurs most often in the data
 - Unimodal: 1 mode (peak)
 - Bimodal: 2 modes (peaks)
 - Multimodal: >2 modes (peaks)

What is the mode of:

3, 8, 3, 4, 3, 6, 4, 2, 3
Unimodal – bimodal – multimodal distributions

- **Bimodal**: a distribution with two modes (peaks)
 - General term: Multimodal distributions

Figure 1. A simple bimodal distribution, in this case a mixture of two normal distributions with the same variance but different means. The figure shows the probability density function (p.d.f.), which is an equally-weighted average of the bell-shaped p.d.f.s of the two normal distributions. If the weights were not equal, the resulting distribution could still be bimodal but with peaks of different heights.

Figure 2. A bimodal distribution.

Bimodality of the distribution in a sample is often a strong indication that the distribution of the variable in population is not normal. **Bimodality** of the distribution may provide important information about the nature of the investigated variable (i.e., the measured quality). For example, if the variable represents a reported preference or attitude, then bimodality may indicate a polarization of opinions. Often, however, the bimodality may indicate that the sample is not homogenous and the observations come in fact from two or more "overlapping" distributions. Sometimes, bimodality of the distribution may indicate problems with the measurement instrument (e.g., "gage calibration problems" in natural sciences, or "response biases" in social sciences).

Source:

Univariate descriptors: measures of central tendency

- Mean, median and mode in normal vs highly-skewed distributions

![Graph showing mean, median, and mode in different distributions](image-url)
Univariate descriptors: measures of spread

Let x_1, \ldots, x_n be a random sample of an attribute X. The degree to which X values tend to spread is called dispersion or variance of X:

- **Variance σ^2:**
 \[\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

- **Standard deviation σ** is the square root of the variance:
 \[\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2} \]

Same mean (20), different spread
Univariate descriptors: measures of spread

Standard deviation appears as a parameter in a number of statistical and probabilistic formulas.

Example: for a normal distribution

- ~68% of values drawn from the distribution are within 1σ
- ~95% of the values lie within 2σ
- ~99.7% of the values lie within 3σ

Source: http://en.wikipedia.org/wiki/Normal_distribution
Univariate descriptors: useful charts

Let $x_1,...,x_n$ be a random sample of an attribute X. For visual inspection of X, several types of charts are useful.

- **Histograms:**
 - Summarizes the distribution of X
 - X axis: attribute values, Y axis: frequencies
 - Absolute frequency: for each value a, # occurrences of a in the sample
 - Relative frequency: $f(a) = h(a)/n$

- **Different types of histograms, e.g.:**
 - **Equal width:**
 - It divides the range into N intervals of equal size
 - **Equal frequency/ depth:**
 - It divides the range into N intervals, each containing approximately same number of samples

Source: http://www.dbs.ifi.lmu.de/Lehre/KDD/SS16/skript/2_DataRepresentation.pdf
Univariate descriptors: useful charts

For visual inspection of an attribute X, several types of charts are useful.

- **Boxplots**: a standardized way of displaying the distribution of data based on a 5 number summary:
 - min, Q_1, $median$, Q_3, max
 - Q_1 (25^{th} percentile): 25% of the data follow below this percentile
 - Median (50^{th} percentile): 50% of the data follow below this percentile
 - Q_3 (75^{th} percentile): 75% of the data follow below this percentile
 - Range: max value – min value
 - The whiskers go from each quartile to min or max

Univariate descriptors: An example

- Sample: The Annual Salaries ($) for 20 Selected Employees at a Local Company, already sorted

30000 32000 32000 33000 33000 34000 34000 38000 38000 38000 42000 43000 45000 45000 48000 50000 55000 55000 65000 110000

- How to compute the boxplot? (Recall a boxplot is a 5 number summary: \textit{min}, \textit{Q}_1, \textit{median}, \textit{Q}_3, \text{max})
 - Order the data from smallest to largest
 - Find the median
 - Find the quartiles
 - \textit{Q}_1 is the median of the data points to the left of the median
 - \textit{Q}_3 is the median of the data points to the right of the median
 - Find min and max

<table>
<thead>
<tr>
<th>Lowest</th>
<th>Lower Quartile (QL)</th>
<th>Median</th>
<th>Upper Quartile (QU)</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>$30,000</td>
<td>$33,500</td>
<td>$40,000</td>
<td>$49,000</td>
<td>$110,000</td>
</tr>
</tbody>
</table>
Univariate descriptors: useful charts

- **Box plots** are used to show overall patterns of response for a group. They provide a useful way to visualize the range and other characteristics of responses for a large group.

![Box plots](http://www.wellbeingatschool.org.nz/information-sheet/understanding-and-interpreting-box-plots)

- Boxplot 2 is comparatively short: similar values
- Boxplots 1 and 3 are comparatively tall: quite different values
- ...

Data Mining I @SS19, Lecture 2: Getting to know your data
Bivariate descriptors

- Given two attributes X, Y one can measure how strongly they are correlated
 - For numerical data \rightarrow correlation coefficient
 - For categorical data $\rightarrow \chi^2$ (chi-square)

$$\mathbf{D} = \begin{pmatrix}
X_1 & X_2 & \cdots & X_d \\
X_{11} & X_{12} & \cdots & X_{1d} \\
X_{21} & X_{22} & \cdots & X_{2d} \\
\vdots & \vdots & \ddots & \vdots \\
X_{n1} & X_{n2} & \cdots & X_{nd}
\end{pmatrix}$$
Bivariate descriptors: for numerical features

- **Correlation coefficient** (also called Pearson’s correlation coefficient) measures the *linear* association between \(X, Y \):

\[
r_{XY} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) \cdot (y_i - \bar{y})}{\sigma_X \sigma_Y}
\]

- \(x_i, y_i \): the values in the \(i \)th tuple for \(X, Y \)

- value range: \(-1 \leq r_{XY} \leq 1\)

- the higher \(r_{XY} \) the stronger the correlation
 - \(r_{XY} > 0 \) positive correlation
 - \(r_{XY} < 0 \) negative correlation
 - \(r_{XY} \approx 0 \) no correlation/independent

Source: https://psychlopedia.wikispaces.com/Correlation+Coefficient
Bivariate descriptors: for numerical features

- Visual inspection of correlation

![Scatter plots illustrating correlations from -1 to 1.](image)

Figure 5.11. Scatter plots illustrating correlations from -1 to 1.
Bivariate descriptors: for categorical features

- The chi-square (χ^2) test tests whether two categorical variables $X=\{x_1, \ldots, x_c\}$, $Y=\{y_1, \ldots, y_r\}$ are independent (no relationship).

- How to compute the chi-square statistic? → use a contingency table.
 - Represents the absolute frequency h_{ij} of each combination of values (x_i, y_j) and the marginal frequencies h_i, h_j of X, Y.

<table>
<thead>
<tr>
<th>Attribute X</th>
<th>Medium-term unemployment</th>
<th>Long-term unemployment</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No education</td>
<td>19</td>
<td>18</td>
<td>37</td>
</tr>
<tr>
<td>Teaching</td>
<td>43</td>
<td>20</td>
<td>63</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
<td>38</td>
<td>100</td>
</tr>
</tbody>
</table>

- Chi-square χ^2 test
 \[
 \chi^2 = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}
 \]
 \[e_{ij} = \frac{h_i h_j}{n}\]
 \[o_{ij}: \text{observed frequency}\]
 \[e_{ij}: \text{expected frequency}\]
Bivariate descriptors: for categorical features

- Chi-square example
 - (numbers in parenthesis are the expected counts)

<table>
<thead>
<tr>
<th>Attribute X</th>
<th>Play chess</th>
<th>Not play chess</th>
<th>Sum (row)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Like science fiction</td>
<td>250 (???)</td>
<td>200 (???)</td>
<td>450</td>
</tr>
<tr>
<td>Not like science fiction</td>
<td>50 (???)</td>
<td>1000 (???)</td>
<td>1050</td>
</tr>
<tr>
<td>Sum(col.)</td>
<td>300</td>
<td>1200</td>
<td>1500</td>
</tr>
</tbody>
</table>

Recall:
\[e_{ij} = \frac{h_i h_j}{n} \]

What are the expected values?
Bivariate descriptors: for categorical features

- Chi-square example
 - (numbers in parenthesis are the expected counts)

<table>
<thead>
<tr>
<th>Attribute X</th>
<th>Play chess</th>
<th>Not play chess</th>
<th>Sum (row)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Like science fiction</td>
<td>250 (90)</td>
<td>200 (360)</td>
<td>450</td>
</tr>
<tr>
<td>Not like science fiction</td>
<td>50 (210)</td>
<td>1000 (840)</td>
<td>1050</td>
</tr>
<tr>
<td>Sum(col.)</td>
<td>300</td>
<td>1200</td>
<td>1500</td>
</tr>
</tbody>
</table>
Bivariate descriptors: for categorical features

- Chi-square example

<table>
<thead>
<tr>
<th>Attribute X</th>
<th>Play chess</th>
<th>Not play chess</th>
<th>Sum (row)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Like science fiction</td>
<td>250 (90)</td>
<td>200 (360)</td>
<td>450</td>
</tr>
<tr>
<td>Not like science fiction</td>
<td>50 (210)</td>
<td>1000 (840)</td>
<td>1050</td>
</tr>
<tr>
<td>Sum(col.)</td>
<td>300</td>
<td>1200</td>
<td>1500</td>
</tr>
</tbody>
</table>

- \(\chi^2 \) (chi-square) calculation

\[
\chi^2 = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}
\]

\[
\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93
\]

- How do we interpret this value?
 - Using the table of critical values
Table of critical values

- Based on your desired confidence level (e.g., 95% → \(p = 0.05 \))
- Based on the degrees of freedom (e.g., 1 degrees of freedom)
- Check if your value is significant or nonsignificant

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>Probability</th>
<th>Nonsignificant</th>
<th>Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.95 0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.01 0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.004 0.02 0.06 0.15 0.46 1.07 1.64 2.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.10 0.21 0.45 0.71 1.39 2.41 3.22 4.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.25 0.58 1.01 1.42 2.37 3.66 4.64 6.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.71 1.06 1.65 2.20 3.36 4.88 5.99 7.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.14 1.61 2.34 3.00 4.35 6.06 7.29 9.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.63 2.20 3.07 3.83 5.35 7.23 8.56 10.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.17 2.83 3.82 4.67 6.35 8.88 9.50 12.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.73 3.49 4.59 5.53 7.34 9.52 11.03 13.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3.32 4.17 5.38 6.39 8.34 10.66 12.24 14.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3.94 4.86 6.18 7.27 9.34 11.78 13.44 15.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: http://www.ox.ac.uk/media/global/wwwoxacuk/localsites/uaconference/presentations/P8_is_it_statistically_significant.pdf
Bivariate descriptors: for categorical features

- **Chi-square example**

<table>
<thead>
<tr>
<th>Attribute X</th>
<th>Play chess</th>
<th>Not play chess</th>
<th>Sum (row)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Like science fiction</td>
<td>250 (90)</td>
<td>200 (360)</td>
<td>450</td>
</tr>
<tr>
<td>Not like science fiction</td>
<td>50 (210)</td>
<td>1000 (840)</td>
<td>1050</td>
</tr>
<tr>
<td>Sum(col.)</td>
<td>300</td>
<td>1200</td>
<td>1500</td>
</tr>
</tbody>
</table>

- **X^2 (chi-square) calculation**

$$
X^2 = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^2}{e_{ij}}
$$

$$
X^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93
$$

- Look up the critical chi-square statistic value for e.g., $p = 0.05$ (95% confidence level) and
 - 1 degree of freedom \((2-1) \times (2-1) = 1\)
Look up the critical chi-square statistic value for e.g., \(p = 0.05 \) (95% confidence level) with 1 degree of freedom \((2-1)*(2-1)=1\) \(\Rightarrow \) \(3.84 < 507.93\) so reject the hypothesis that they are not correlated.

Table of critical values

<table>
<thead>
<tr>
<th>Degrees of Freedom</th>
<th>0.95</th>
<th>0.90</th>
<th>0.80</th>
<th>0.70</th>
<th>0.50</th>
<th>0.30</th>
<th>0.20</th>
<th>0.10</th>
<th>0.05</th>
<th>0.01</th>
<th>0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.004</td>
<td>0.02</td>
<td>0.06</td>
<td>0.15</td>
<td>0.46</td>
<td>1.07</td>
<td>1.64</td>
<td>2.71</td>
<td>3.84</td>
<td>6.64</td>
<td>10.83</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>0.21</td>
<td>0.45</td>
<td>0.71</td>
<td>1.39</td>
<td>2.41</td>
<td>3.22</td>
<td>4.60</td>
<td>5.99</td>
<td>9.21</td>
<td>13.82</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
<td>0.58</td>
<td>1.01</td>
<td>1.42</td>
<td>2.37</td>
<td>3.66</td>
<td>4.64</td>
<td>6.25</td>
<td>7.82</td>
<td>11.34</td>
<td>16.27</td>
</tr>
<tr>
<td>4</td>
<td>0.71</td>
<td>1.06</td>
<td>1.65</td>
<td>2.20</td>
<td>3.36</td>
<td>4.88</td>
<td>5.99</td>
<td>7.78</td>
<td>9.49</td>
<td>13.28</td>
<td>18.47</td>
</tr>
<tr>
<td>5</td>
<td>1.14</td>
<td>1.61</td>
<td>2.34</td>
<td>3.00</td>
<td>4.35</td>
<td>6.06</td>
<td>7.29</td>
<td>9.24</td>
<td>11.07</td>
<td>15.09</td>
<td>20.52</td>
</tr>
<tr>
<td>6</td>
<td>1.63</td>
<td>2.20</td>
<td>3.07</td>
<td>3.83</td>
<td>5.35</td>
<td>7.23</td>
<td>8.56</td>
<td>10.64</td>
<td>12.59</td>
<td>16.81</td>
<td>22.46</td>
</tr>
<tr>
<td>7</td>
<td>2.17</td>
<td>2.83</td>
<td>3.82</td>
<td>4.67</td>
<td>6.35</td>
<td>8.38</td>
<td>9.80</td>
<td>12.02</td>
<td>14.07</td>
<td>18.48</td>
<td>24.32</td>
</tr>
<tr>
<td>8</td>
<td>2.73</td>
<td>3.49</td>
<td>4.59</td>
<td>5.53</td>
<td>7.34</td>
<td>9.52</td>
<td>11.03</td>
<td>13.36</td>
<td>15.51</td>
<td>20.09</td>
<td>26.12</td>
</tr>
<tr>
<td>10</td>
<td>3.94</td>
<td>4.86</td>
<td>6.18</td>
<td>7.27</td>
<td>9.34</td>
<td>11.78</td>
<td>13.44</td>
<td>15.99</td>
<td>18.31</td>
<td>23.21</td>
<td>29.59</td>
</tr>
</tbody>
</table>

Source: http://www.ox.ac.uk/media/global/wwwoxacuk/localsites/uasconference/presentations/P8_Is_it_statistically_significant.pdf
Outline

- Data preprocessing
- Decomposing a dataset: instances and features
- Basic data descriptors
- Proximity (similarity, distance) measures
 - Feature transformation for text data
- Data Visualization
- Homework/ Tutorial
- Things you should know from this lecture
Proximity measures for numerical attributes

- **Manhattan distance or City-block distance (L_1 norm)**
 - $dist_1 = |p_1 - q_1| + |p_2 - q_2| + ... + |p_d - q_d|$
 - The sum of the absolute differences of the p,q coordinates

- **Euclidean distance (L_2 norm)**
 - $dist_2 = ((p_1 - q_1)^2 + (p_2 - q_2)^2 + ... + (p_d - q_d)^2)^{1/2}$
 - The length of the line segment connecting p and q

- **Supremum distance (L_{max} norm or L_∞ norm)**
 - $dist_\infty = \max\{|p_1 - q_1|, |p_2 - q_2|, ..., |p_d - q_d|\}$
 - The max difference between any attributes of the objects.

- **Minkowski Distance (Generalization of L_p-distance)**
 - $dist_p = (|p_1 - q_1|^p + |p_2 - q_2|^p + ... + |p_d - q_d|^p)^{1/p}$

Proximity measures for numerical attributes: examples

Example

<table>
<thead>
<tr>
<th>point</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>p1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>p2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>p3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>p4</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Point coordinates

L_1 distance matrix

<table>
<thead>
<tr>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

L_2 distance matrix

<table>
<thead>
<tr>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.828</td>
<td>3.162</td>
<td>5.099</td>
</tr>
<tr>
<td>2.828</td>
<td>0</td>
<td>1.414</td>
<td>3.162</td>
</tr>
<tr>
<td>3.162</td>
<td>1.414</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5.099</td>
<td>3.162</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

L_∞ distance matrix

<table>
<thead>
<tr>
<th>p1</th>
<th>p2</th>
<th>p3</th>
<th>p4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Normalization

- Attributes with large ranges outweigh ones with small ranges
 - e.g. income [10.000-100.000]; age [10-100]

- To balance the “contribution” of an attribute A in the resulting distance, the attributes are scaled to fall within a small, specified range.

- min-max normalization: Transform the feature from measured units to a new interval $[\text{new}_\text{min}_A, \text{new}_\text{max}_A]$

 $$v' = \frac{v - \text{min}_A}{\text{max}_A - \text{min}_A} (\text{new}_\text{max}_A - \text{new}_\text{min}_A) + \text{new}_\text{min}_A$$

- v is the current feature value

Normalize age = 30 in the [0-1] range, given $\text{min}_{age}=10$, $\text{max}_{age}=100$

$$\text{new}_\text{age}=((30-10)/(100-10))*(1-0)+0=2/9$$
Normalization

- z-score normalization also called zero-mean normalization or standardization: Transform the data by converting the values to a common scale with an average of zero and a standard deviation of one.
 - After zero-mean normalization, each feature will have a mean value of 0
 \[v' = \frac{v - \text{mean}_A}{\text{stand}_A} \]
 - where \(\text{mean}_A, \text{stand}_A \) are the mean and standard deviation of the feature

Normalize income = 70,000 if \(\text{mean}_{\text{income}}=50,000 \), \(\text{stand}_A_{\text{income}}=15,000 \)

\[\text{new value} = \frac{70,000 - 50,000}{15,000} = 1.33 \]
Proximity measures for binary attributes 1/2

- A binary attribute has only two states: 0 (absence), 1 (presence)

- A contingency table for binary data

<table>
<thead>
<tr>
<th>Instance i</th>
<th>1</th>
<th>0</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>q</td>
<td>r</td>
<td>q+r</td>
</tr>
<tr>
<td>0</td>
<td>s</td>
<td>t</td>
<td>s+t</td>
</tr>
<tr>
<td>sum</td>
<td>q+s</td>
<td>r+t</td>
<td>p</td>
</tr>
</tbody>
</table>

- Simple matching coefficient
 (for symmetric binary variables)

 \[d(i, j) = \frac{r + s}{q + r + s + t} \]

- for asymmetric binary variables:

 \[d(i, j) = \frac{r + s}{q + r + s} \]

- Jaccard coefficient
 (for asymmetric binary variables)

 \[sim_{Jaccard}(i, j) = \frac{q}{q + r + s} \]
Proximity measures for binary attributes 2/2

- Example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Fever</th>
<th>Cough</th>
<th>Test-1</th>
<th>Test-2</th>
<th>Test-3</th>
<th>Test-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mary</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Jim</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[d(jack, mary) = \frac{0 + 1}{2 + 0 + 1} = 0.33 \]
\[d(jack, jim) = \frac{1 + 1}{1 + 1 + 1} = 0.67 \]
\[d(jim, mary) = \frac{1 + 2}{1 + 1 + 2} = 0.75 \]

\[d(i, j) = \frac{r + s}{q + r + s} \]

\(q = \) the number of attributes where \(i \) was 1 and \(j \) was 1
\(t = \) the number of attributes where \(i \) was 0 and \(j \) was 0
\(s = \) the number of attributes where \(i \) was 0 and \(j \) was 1
\(r = \) the number of attributes where \(i \) was 1 and \(j \) was 0
Proximity measures for categorical attributes

- A nominal attribute has >2 states (generalization of a binary attribute)
 - e.g. color = \{red, blue, green\}

- Method 1: Simple matching
 - \(m \): # of matches, \(p \): total # of variables

 \[
 d(i, j) = \frac{p - m}{p}
 \]

- Method 2: Map it to binary variables
 - create a new binary attribute for each of the \(M \) nominal states of the attribute

<table>
<thead>
<tr>
<th>Name</th>
<th>Brown hair</th>
<th>Blond hair</th>
<th>IsStudent</th>
<th>IsArchitect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jack</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mary</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Jim</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Selecting the right proximity measure

- The proximity function should fit the type of data
 - For dense continuous data, metric distance functions like Euclidean are often used.
 - For sparse data, typically measures that ignore 0-0 matches are employed
 - We care about characteristics that objects share, not about those that both lack
- Domain expertise is important, maybe there is already a state-of-the-art proximity function in a specific domain and we don’t need to answer that question again.
- In general, choosing the right proximity measure can be a very time consuming task
- Other important aspects: How to combine proximities for heterogenous attributes (binary and numeric and nominal etc.)
Outline

- Data preprocessing
- Decomposing a dataset: instances and features
- Basic data descriptors
- Proximity (similarity, distance) measures
- Feature transformation for text data
- Data Visualization
- Homework/ Tutorial
- Things you should know from this lecture
Feature transformations for text data 1/6

- Text represented as a set of terms ("Bag-Of-Words" model)
 - Terms:
 - Single words ("cluster", "analysis"..)
 or
 - bigrams, trigrams, ..., n-grams ("cluster analysis",..)
 - Transformation of a document \(d\) in a vector \(r(d) = (h_1, ..., h_d)\), \(h_i \geq 0\): the frequency of term \(t_i\) in \(d\)

The region is preparing for blizzard conditions Friday, with the potential for more than two feet of snow in the Fairfax City area. Conditions are expected to deteriorate Friday afternoon, with the biggest snowfall, wind gusts and life-threatening conditions Friday night and Saturday.
Feature transformations for text data 2/6

- Challenges/Problems in Text Mining:
 1. Common words ("e.g.", "the", "and", "for", "me")
 2. Words with the same root ("fish", "fisher", "fishing",...)
 3. Very high-dimensional space (dimensionality $d > 10.000$)
 4. Not all terms are equally important
 5. Most term frequencies $h_i = 0$ ("sparse feature space")

- More challenges due to language:
 - Different words have same meaning (synonyms)
 - "freedom" – "liberty"
 - Words have more than one meanings
 - e.g. "java", "mouse"
Feature transformations for text data

- **Problem 1:** Common words ("e.g.", "the", "and", "for", "me")
 - Solution: ignore these terms (stopwords)

 There are stopwords list for all languages in WWW.

- **Problem 2:** Words with the same root ("fish", "fisher", "fishing",...)
 - Solution: Stemming

 Map the words to their root

 - "fishing", "fished", "fish", and "fisher" to the root word, "fish"

 For English, the Porter stemmer is widely used.
 (Porters Stemming Algorithms: http://tartarus.org/~martin/PorterStemmer/index.html)

 Stemming solutions exist for other languages also.

 The root of the words is the output of stemming.
Problem 3: Too many features/terms (Very high-dimensional space)

- Solution: Select the most important features ("Feature Selection")
- Example: average document frequency for a term
 - Very frequent items appear in almost all documents
 - Very rare terms appear in only a few documents

Ranking procedure:

1. Compute document frequency for all terms t_i:
 \[DF(t_i) = \frac{\text{#Docs containing } t_i}{\text{#All documents}} \]
2. Sort terms w.r.t. $DF(t_i)$ and get $\text{rank}(t_i)$
3. Sort terms by $score(t_i) = DF(t_i) \cdot \text{rank}(t_i)$
 - e.g. $score(t_{23}) = 0.82 \cdot 1 = 0.82$
 - $score(t_{17}) = 0.65 \cdot 2 = 1.3$
4. Select the k terms with the largest $score(t_i)$

<table>
<thead>
<tr>
<th>Rank</th>
<th>Term</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>t_{23}</td>
<td>0.82</td>
</tr>
<tr>
<td>2.</td>
<td>t_{17}</td>
<td>0.65</td>
</tr>
<tr>
<td>3.</td>
<td>t_{14}</td>
<td>0.52</td>
</tr>
<tr>
<td>4.</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Problem 4: Not all terms are equally important

- Idea: Very frequent terms are less informative than less frequent words. Define such a term weighting schema.

- Solution: TF-IDF (Term Frequency · Inverse Document Frequency)

Consider both the importance of the term in the document and in the whole collection of documents.

\[
TF(t,d) = \frac{n(t,d)}{\sum_{w \in d} n(w,d)} \quad \text{The frequency of term } t \text{ in } d
\]

\[
IDF(t) = \log\left(\frac{|DB|}{|\{d \mid d \in DB \land t \in d\}|}\right) \quad \text{Inverse frequency of term } t \text{ in all DB}
\]

\[
TF \times IDF = TF(t,d) \times IDF(t)
\]

Feature vector with TF-IDF: \(r(d) = (TF(t_1,d) \cdot IDF(t_1), ..., TF(t_n,d) \cdot IDF(t_n)) \)
Problem 5: for most of the terms $h_i = 0$

- Euclidean distance is not a good idea: it is influenced by vectors lengths
- Idea: use more appropriate distance measures

Jaccard Coefficient: Ignore terms absent in both documents

$$d_{\text{Jaccard}}(d_1, d_2) = 1 - \frac{|d_1 \cap d_2|}{|d_1 \cup d_2|} = \frac{|\{ t | t \in d_1 \wedge t \in d_2 \}|}{|\{ t | t \in d_1 \vee t \in d_2 \}|}$$

Cosine Coefficient: Consider term values (e.g. TFIDF values)

$$d_{\text{cosinus}}(d_1, d_2) = 1 - \frac{\langle d_1, d_2 \rangle}{\| d_1 \| \cdot \| d_2 \|} = 1 - \frac{\sum_{i=0}^{n} (d_{1,i} \cdot d_{2,i})}{\sqrt{\sum_{i=0}^{n} d_{1,i}^2} \cdot \sqrt{\sum_{i=0}^{n} d_{2,i}^2}}$$
Outline

- Data preprocessing
- Decomposing a dataset: instances and features
- Basic data descriptors
- Proximity (similarity, distance) measures
- Feature transformation for text data
- Data Visualization
- Homework/ Tutorial
- Things you should know from this lecture
Data Visualization

A variety of techniques

- Parallel Coordinates
- Quantile Plot (√)
- Scatter Plot Matrix (√)
- Loess Curve
- Spiderweb model
- Chernoff faces
Parallel Coordinates

Method to visualize high dimensional data sets in parallel axes of feature spaces

Abstract Idea: Represent a d-dimensional feature space with a system of d-parallel axes

Instance Representation: a polygonal line crossing each parallel axis to its corresponding feature value of the instance
Abstract Idea: “Spider chart or radar chart is a visualization technique for multivariate data in the form of two-dimensional chart represented on axes, radii, starting from the same point”

** Notation:
radii = equi-angular spokes ≈ spider-net axes

Instance Representation:
Polyline that intersects each spider-net axis

Motivation: Sets all instances to a common origin
But does not help if number of instances is big (Big Data)
Chernoff Faces

Visualize multivariate data in the shape of **human face**

Motivation: Humans can easily perceive faces and notice small variations on them

Method: Each individual parts of face, e.g. *eyes, nose,*.. represent one feature and the shape the corresponding instance's value

But applicable with at a certain number of feature dimensions (dimensional reduction)

Chernoff faces for laywers' ratings for twelve judges. Image source: https://en.wikipedia.org/wiki/Chernoff_face

Slide after https://en.wikipedia.org/wiki/Chernoff_face
Example of mapping of face parts to climate features.

Using the left mapping, Climatic data of some cities represented by Chernoff faces.

Fig.4.11(left), Fig.4.12 (right) of R. Maza "Introduction to Information Visualization" Springer 2009.
Outline

- Data preprocessing
- Decomposing a dataset: instances and features
- Basic data descriptors
- Proximity (similarity, distance) measures
- Feature transformation for text data
- Data Visualization
- Homework/ Tutorial
- Things you should know from this lecture
Homework/ tutorial

- 2nd tutorial follows next week
 - No tutorials on Monday, but please come on Tuesday (it might be more crowded)

- Homework
 - Investigate a dataset (e.g., the iris dataset) using Python. What can you see?

- Readings:
 - Zaki and Meira book, Chapter 1
Outline

- Data preprocessing
- Decomposing a dataset: instances and features
- Basic data descriptors
- Feature spaces and proximity (similarity, distance) measures
- Feature transformation for text data
- Data Visualization
- Homework/ Tutorial

Things you should know from this lecture
Things you should know from this lecture

- Basics of data preprocessing
- Basic feature types
- Proximity measures
Acknowledgement

The slides are based on

- KDD I lecture at LMU Munich (Johannes Aßfalg, Christian Böhm, Karsten Borgwardt, Martin Ester, Eshref Januzaj, Karin Kailing, Peer Kröger, Eirini Ntoutsi, Jörg Sander, Matthias Schubert, Arthur Zimek, Andreas Züfle)
- Introduction to Data Mining book slides at http://www-users.cs.umn.edu/~kumar/dmbook/
- Pedro Domingos Machine Lecture course slides at the University of Washington
- Thank you to all TAs contributing to their improvement, namely Vasileios Iosifidis, Damianos Melidis, Tai Le Quy, Han Tran