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Abstract 
Reinforcement learning is considered as one of the most 
suitable and prominent methods for solving game 
problems due to its capability to discover good strategies 
by extended self-training and limited initial knowledge. 
In this paper we elaborate on using reinforcement 
learning for verifying game designs and playing 
strategies. Specifically, we examine a new strategy game 
that has been trained on self-playing games and analyze 
the game performance after human interaction. We 
demonstrate, through selected game instances, the impact 
of human interference to the learning process, and 
eventually the game design. 
 
 
1. Introduction 

 
The game theory domain is widely regarded as 

appropriate for understanding the concepts of machine 
learning. Scientists usually focus on strategic games and 
make efforts to create �intelligent� programs that 
efficiently compete with human players. Such games are 
suitable because of their complexity and the opportunities 
they offer to explore winning strategies. Furthermore, 
evaluation criteria are typically known, whereas the game 
environment, the moves and the termination conditions 
can be simulated by software. 

Scientists have long tried to create expert artificial 
players for strategy games. In 1950, Shannon began to 
study how computers could play chess and proposed the 
idea of using a value function to compete with human 
players [1]. In 1959, Samuel created a checkers program 
that tried to find �the highest point in multidimensional 
scoring space� [2]. Although the experiments of Samuel�s 
research were impressive they did not exert significant 
influence (at that time). It was in 1988 when Sutton 
formulated the TD(λ) method for temporal difference 

learning [3]. Since then, more games such as Tetris, 
Blackjack, Othello [4], chess [5], backgammon [6-7] 
were analysed by applying TD(λ) to improve their 
performance. During the 1990s, IBM made strenuous 
efforts to develop (first with Deep Thought, later with 
Deep Blue) a chess program comparable to the best 
human player. Whether it succeeded is still mainly a 
philosophical and technological question. 

One of the most successful and promising applications 
of TD(λ) is TD-Gammon [6-7] for the game of 
backgammon. Using reinforcement learning (RL) 
techniques and after training with 1.5 million self-
playing games, a performance comparable to that 
demonstrated by backgammon world champions was 
achieved. 

The advantage of RL to other learning methods is that 
it requires little ad hoc programming effort for system 
training. Training is achieved by a system�s interaction 
with its environment and it is the system itself that 
detects which actions to take via trial and error, with 
limited need for direct human involvement. RL 
comprehends changes of the learning environment 
without having to be re-programmed from scratch.  

As far as strategy games are concerned, the most 
important and critical point of them is to select and 
implement the computer�s strategy during the game. The 
term strategy stands for the selection of the computer�s 
next move considering its current situation, the 
opponent�s situation, consequences of that move and 
possible next moves of the opponent. RL helps solve this 
problem by formulating strategies in terms of policies. 

In this paper we continue the research of Kalles and 
Kanellopoulos [8] on the application of RL to the design 
of a new strategy game (see section below, for a detailed 
game description). The research demonstrated that, when 
trained with self-playing games, both players had nearly 
equal opportunities to win and neither player enjoyed a 
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pole position advantage. In this paper, we aim to explore 
the extent to which this conclusion continues to stand for 
the case one of the opponents is human.  Specifically, we 
will try to give answers to questions such as: (1) Are 
games played from a computer against itself enough to 
accomplish learning? (2) Which case is more suitable for 
learning, a computer playing against itself or a computer 
playing against a human player? (3) Does playing with 
human players improve the computer performance much 
more than playing against itself? 

The rest of this paper is organised in six sections. The 
next section presents the details of the game. It includes 
the basic components of the game, rules for legal pawn 
movements, special characteristics and playability issues. 
The third section refers to the game analysis; which 
methods are used and how they could lead towards 
learning. The fourth section describes training issues and 
experimental results. The fifth section refers to the 
human factor and how this affects the learning procedure. 
Finally, we put all the details together and discuss lines of 
future research that have been deemed worthy of 
following. 

 
2. A description of the game 

 
We now describe a new game, designed by one of the 

authors, first presented in [8]. It is a deterministic game, 
which seems easier than chess and backgammon to 
analyze. Its main difficulty arises from the fact that, 
during analysis, moves must be stochastically generated 
to ensure sufficient exploration of the state space, unlike 
in case of the backgammon where moves are due to dices. 
The challenge of designing a game with sufficient depth, 
and exploring its playability in respect of strategies, were 
the main reasons why we turned to a new game rather 
than use some of the already well known ones. 

The game is played on a square board of size n, by two 
players: black and white. Two square bases of size a are 
located on opposite board corners. At game kick-off each 
player possesses β pawns. For the rest of the paper we 
adopt the assumption that the white player is the owner of 
the lower-left base (and of white pawns) while the black 
player is the owner of the upper-right base (and of black 
pawns). Each player�s goal is to move a pawn into its 
opponent�s base; the first player who achieves this is the 
winner.  

A pawn can move to an empty square that is vertically 
or horizontally adjacent, provided that the maximum 
distance from its base is not decreased (so, backward 
moves are not allowed). A pawn that has no legal moves 
is lost (more than one pawn may be lost in one round). If 
some player runs out of pawns the opponent is considered 
to be the winner. 

Legal moves can be categorized in moves of leaving 
the base and of moving from one square to another. The 
base is considered as a single square and not as a set of 
squares, therefore every pawn of the base can move at 
one step to any of the adjacent to the base free squares. 

 

 

Figure 1. Examples and counterexamples of moves. 

Examples and counterexamples of moves are shown in 
Figure 1. The upper board demonstrates a legal and an 
illegal move for the pawn pointed by the arrow (this 
pawn can move �backward� only to the ! square but not 
to the ! square because its distance from base is 
decreased). The lower boards demonstrate moves that 
cause losses of pawns (with arrows showing pawn 
casualties). Such (loss incurring) moves bring about the 
direct adjustment of the moving pawn with some pawn of 
the opponent. In such cases the �trapped� pawn 
automatically draws away from the game. As a by-
product of this rule, when there is no free square next to 
the base, the rest of the pawns of the base are lost as is 
shown in the bottom right game board. 

 
3. A brief analysis of the game 

 
The initial challenge was to design and implement a 

system that learns how to play through a number of self � 
playing games. Reinforcement Learning is ideal for this 
purpose since it is characterized as learning that takes 
place via continuous interaction of the learning agent 
with its environment. The agent itself detects which 
actions to take via trial and error learning. 

The game is a discrete Markov procedure, since there 
are finite states and moves, and since each episode does 
terminate. The a priori knowledge of the system consists 
of the rules only. The agent�s goal is to learn a policy π: S  
" A (S is the state space and A is the space of legal 
moves), that will maximize the expected sum of rewards 



in a specific time; this is called an optimal policy. A 
policy determines which action should be taken next 
given the current state of the environment. 

The move selection is critical and affects the whole 
learning procedure. The agent has to decide whether to 
choose an action that will straightforward maximize its 
reward or to try a new action for which it does not know 
anything but may prove to be better (the first case is 
known as exploitation, whereas the second is known as 
exploration). The answer to the above question is (in our 
case, too) both. Specifically, the system uses an ε-greedy 
policy, with ε=0.9, which means that in 90% of the cases 
the system chooses the best-valued action, while in the 
rest 10% it chooses a random one. 

The agent estimates whether it is good for it to be in a 
specific position using the Vπ(s) value function. 
According to Vπ(s), the value of the state s of the strategy 
π equals to the sum of the expected rewards starting from 
state s and following the strategy π. Specifically, the 
agent is interesting in discovering the optimal strategy 
(the strategy that will maximize the expected sum of 
rewards) and for this it uses the optimal value function 
Vπ(s). Learning comes from the experience in playing or 
training from samples of positions taken from the game. 
Because of the high dimensionality and large state space 
of this computation we use neural networks as a 
generalization technique, to interpolate between game 
board situations. 

In fact, two neural networks were used, one for each 
player, because each player has a unique state space. 
Back-propagation was used, setting the RL parameters to 
γ=0.95 and λ=0.5.The input layer nodes are the board 
positions for the next possible move, totalling n2-2a2+10. 
The hidden layer consists of half as many hidden nodes, 
whereas the output node has only one node, which can be 
regarded as the probability of winning beginning from a 
specific game-board configuration and then taking on a 
specific move. 

At the beginning all states have the same value except 
for the final states. After each move the values are 
updated through the temporal-difference learning rule. 
The algorithm in use is TD(λ), where λ determines the 
reduction degree of assigning credit to some action. Using 
λ only, the eligible states (eligibility traces can be seen as 
a temporary record of the occurrence of an event, e.g. 
visiting a state) or actions are assigned credit or blame 
when a TD error occurs. We used the technique of 
replacing eligibility traces instead of accumulating them, 
because the latter approach has been known to inhibit 
learning, when a repeated wrong action generates a large 
bad trace. 

 

4. Training issues in self-playing games 
 
Initial experiments [8] had suggested that both 

computer players have nearly equal opportunities to win. 
However, when we tested the game performance against 
a human player we realized that the human player was 
winning almost always, independently of the moves the 
black player was following. Obviously the network 
training was not enough. Tesauro [6-7] reached a high 
level performance in his TD-Gammon after playing a 
huge number (1,500,000) of self-playing games. And, as 
Sutton and Barto [9] point out, in the case of the first 
300,000 games, TD-Gammon performance was poor, 
games lasted hundreds or thousands of moves before one 
side or the other won, almost by accident. 

The above symptoms arose in our game as we noticed 
that the initial games lasted hundred of moves with the 
majority of moves being cyclical between two squares. 
So, we kept on the training procedure and in order to 
speed up learning we changed the way of assigning 
reward. In the initial experiments, each action-move is 
given reward �1, unless the resulting state is a final one; 
then the reward is +50 for the winner�s last move and �
50 for the loser�s last move. The new reward assignment 
procedure was more explicit; each action-move is 
assigned reward not only in final states but also during 
the learning procedure when it loses some pawn or when 
it is next to the opponent�s base.  Our intention was to 
lead the agent to learn quickly that these movements are 
poor and to avoid them in the future.  

The new training results showed a clear improvement 
in computer playing even in the case it had to compete 
with a human player. We identified four obvious points 
of improvement towards the agent�s goal to establish an 
advantage in winning the game. 

First, the computer player now clearly attempts to 
protect its base by covering the next-to-base squares in 
case an opponent�s pawn approaches them. This is a 
clear sign that the computer player has learned to protect 
itself against specific attacks. 

Second, the back-n-forth moves were significantly 
decreased. Currently, the average number of moves per 
game has been nearly halved. 

Third, the area covered by the computer player during 
the game has been significantly expanded. The computer 
player does not stop short at squares lying near its base 
but expands its moves so as to cover distant squares too. 
This is another sign that the computer player has begun 
to understand its goal to possess the opponent�s base. 

Fourth, the computer player protects its pawns. More 
specifically, it moves carefully so as to avoid adjacency 
with opponent�s pawns, which might cause their loss. 
Towards this direction the computer player does not 



occupy all next to (its) base squares; note that due to 
game rules, when all next-to-base squares are occupied, 
the remaining base pawns are lost. In previous 
experiments, the computer player played usually with 
four pawns only, as it lost all the others when it covered 
all next-to-base squares (see also Figure 1 for such an 
example). 

 
5. The human factor in learning acceleration 

 
The above results were all signs of game performance 

improvement. Aiming at greater improvement and to 
speed up learning we decided to examine the impact of 
human interference to the learning procedure. Our 
question was: how can a human player improve the game 
performance and speed up the learning procedure? And, 
we ask, does this have the same influence as adding 
handcrafted features (note that the latter has been shown 
to accelerate learning [6-7]). 

In the proposed game we use two ways to disturb 
regularity: exploration and the human factor. 

Training the system by self-playing games restricts the 
exploration to very narrow portions of the state space, due 
to the absence of some strong �regularity disturbance� 
factor. In the case of backgammon, dice play such a role 
and this is believed to be vital in the success of TD-
Gammon. Dice produce a high degree of variability in the 
positions seen during training and, as a result, the learner 
explores more of the state space, leading to the discovery 
of improved evaluations and new strategies.  

Through exploration the computer chooses some 
moves randomly. The main drawback of exploration is 
that it is very slow and there is no orderly exposure to 
skilled opponents, therefore the danger of over-fitting (in 
rather unimportant areas) is significant. 

 The human player gives the computer opportunities to 
explore a large state space different from what it has seen 
by playing against itself. A human opponent can create 
long-term viewed playing sequences that help a computer 
player to follow a loosely guided unexplored path. 
Furthermore the human player may play experimenting 
with a wealth of strategies and tactics, therefore reducing 
the risk of over-fitting during learning. 

For the experiments we used a game of dimensions 
8x2x10 (8: the game board dimension, 2: the base 
dimension, 10: the number of pawns of each player at 
game kick-off). Since our game is a new one, we had to 
train it from scratch. We used two ways to do that, by 
generating self-playing games and by alternating self-
playing and human-playing games, in line with the 
observations above. 

The experimental results presented below reinforce our 
approach. After training the network with 119,000 self-

playing games, we trained it by playing alternatively self-
playing games and human-computer games. More 
specifically, we followed the training sequence shown in 
Figure 2 (where light-shaded squares correspond to 
human-computer games). 

The training sequence
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Figure 2. The training sequence of self-playing and 
human-computer games. 

In all these human-computer games (the even-
numbered steps in the training sequence of Figure 2) the 
human had a specific goal: to possess the opponent�s base 
by capturing a particular next-to-base square. Our aim 
was to check whether the computer could learn from 
human attacks and how this would affect the learning 
procedure. The number of human-computer games used 
for training was comparably smaller than the number of 
computer games. Our intention was to give the computer 
the opportunity to face situations different from those it 
had explored. 

After playing 160 human-computer games in 
combination with 18,160 self-playing games (totaling 
137,160 games) the computer�s performance has been 
rapidly improved, as it almost never allowed the human 
to enter its base through that particular square (see 
Figure 3 for such a game instance). 

 

 

Figure 3. Performance improvement show case. 

An example of game performance improvement is 
presented in Figure 3. In the left side we show the 
original performance of the game before human 
interference, while on the right we show the improved 
performance of the game after human interference. As we 
see, in the case of human-assisted learning, the computer 



player has covered a much larger area during the game, 
effectively displaying a superior defensive behavior. 
Furthermore, the computer player has protected better its 
base from human-computer player attacks; note that the 
shaded base square before human interference �at the 
left- was uncovered while in the new setting it is 
protected. The last observation is a clear sign that the 
computer player has learned to protect itself against 
specific attacks. 

To disambiguate the human impact in learning we also 
ran 137,160 separate self-playing games and we 
compared them with the above experiments. Experiments 
showed that in the second case the computer had not 
learned something specific. There was little 
improvement in its way of playing but this improvement 
was general and does not correspond to any specific 
strategy. This happens due to the slow speed of learning; 
the computer learns through self-playing games but such 
kind of learning can only be useful after a long number of 
self-playing games.  

Our experiments suggest that learning can be 
accelerated through human interference, which acts as a 
way of exploration of new states.  This result is extremely 
useful as RL is known to suffer from the problem of large 
training times, and we now demonstrate that we can 
aggressively fine-tune its rather-slow-guided search. 

 
6. Experimental results 

 
The findings are quite encouraging for learning 

acceleration. But does human interference contribute to 
the long-term game performance improvement or do we 
risk degrading the generality of computer playing? The 
latter would be surely achieved through self-playing 
games although the number of games required is 
extremely large. To explore this question we ran more 
experiments using the neural network weights. 
Specifically, we ran four sets of experiments, each set 
consisting of 1,000 computer-vs-computer games. Each 
set was based on a different training configuration 
though; see Table 1 for a list of configurations and related 
performance results. 

Table 1. Cross-test of winning learning strategies. 
 

White player (with) 
 

 
Black player (with) 

 
computer training 

54.2% 
computer training 

45.8% 
computer and human training 

55.0% 
computer and human training 

45.0% 
computer training 

50.3% 
computer and human training 

49.7% 
computer and human training 

52.5% 
computer training 

47.5% 
 
The term �white player with computer and human 

training� means that the white computer player bases its 
play on the knowledge received from the 137,160 
compound human-computer games mentioned above (see 
training sequence in Figure 2), whereas the term �white 
player with computer training� means that the white 
computer player bases its play on the knowledge received 
from the 137,160 self-playing games mentioned above. 

The above experiments show that human involvement 
should be carefully exercised to add value to computer 
performance. The human (white player) experience 
proved to be significantly helpful in the case of the black 
player; the percentage of the black player winning games 
has been increased from 45.8% to 49.7%. The opposite 
happens with the white player, whose initial goal was to 
train the black player with a particular defending 
strategy. Towards this aim, the white player was rather 
risky by not exploring new states, and, instead, following 
the minimal path that would ensure it the black�s base 
possession. Performance percentage was decreased from 
54.2% of winning games to 52.5%. 

Another interesting point of the above experimental 
results is the performance percentage for the case where 
the training of both computer players contains games 
against a human opponent. We would expect a reduction 
in the white player�s performance, but we were surprised 
to observe its performance increasing from 54.2% of 
winning games to 55%, which contradicts our intuition. 
A reason could be the (comparatively) small amount of 
experiments, so that a decrease of 0.8% may be actually 
misguiding. 

 
7. Design assistance 

 
Playing a game successfully requires getting and 

keeping the attention of a player by challenging his 
intellectual abilities. Some of them we practice daily: we 
search for solutions, we combine them, we trade-off, we 
plan, we observe patterns and we learn. Getting the right 
mix of these activities might lead to a nice game, but this 



is a question of more a qualitative than quantitative 
nature. Short of pitting human players against each other, 
armed with new set of rules each time the game designer 
needs to modify them, one can expect that prescribing a 
methodology whereby game designs can be simulated and 
evaluated in some "objective" norms, could be a means to 
drastically trim down initial design cycles. We could then 
only concentrate in human responses when some solid 
knowledge about game playing is already in place. 
However, game openings can be very tedious, therefore, 
we propose that RL can be of great value. 

Verifying a design should be best thought of as a 
process to automate the initial design steps, or as a "basic 
competence" test for the design itself. There will be no 
substitute for the talented designer but there will be a 
better output if we can take the boring evaluation chores 
out of the agenda and allow him to concentrate in 
essence. 

This particular direction in game design is being 
proposed by our work. By designing a program that can 
evolve winning strategies (and tactics, especially end-
game ones) we can expect that we will have designed a 
modest opponent to the human game designer who will 
use fewer training rounds to explore the playability of a 
game if new rules have to be added or constraints must be 
relaxed. We do not aim to improve productivity by 
providing fine details, which we doubt we can, but by 
being able to fast create knowledgeable opponents that 
can help human-generated exploration. 

 
8. Conclusion 

 
Experimental results presented in this paper show that 

computer performance can take advantage of human 
knowledge, even when such knowledge is presented to a 
program in a loosely structured way. By obtaining such 
knowledge from a breadth of (human) opponents, over-
fitting problems that can arise due to too-focused 
experience can be avoided. 

We expect to speed up learning by exploring 
Explanation Based Learning techniques. A combination 
of RL and EBL could benefit the game with faster 
learning and the ability to scale to large state spaces in a 
more structured manner [10]. Even though we have not 
observed the particular methodology being taken up by 
many other researchers, we expect that its principle of 
symbolic-assisted chunking of the state space is 
important. 

A parallel improvement of practical value is to develop 
a benchmark computer player; however, this is best 
viewed as a by-product of the game design improvement. 

We are confident, however, that this is a most 
promising research direction with widespread application 

implications, especially so in simulation of educational 
environments. 
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