
Interactive Verification of Game Design and Playing Strategies

Abstract
Reinforcement learning is considered as one of the most
suitable and prominent methods for solving game
problems due to its capability to discover good strategies
by extended self-training and limited initial knowledge.
In this paper we elaborate on using reinforcement
learning for verifying game designs and playing
strategies. Specifically, we examine a new strategy game
that has been trained on self-playing games and analyze
the game performance after human interaction. We
demonstrate, through selected game instances, the impact
of human interference to the learning process, and
eventually the game design.

1. Introduction

The game theory domain is widely regarded as

appropriate for understanding the concepts of machine
learning. Scientists usually focus on strategic games and
make efforts to create �intelligent� programs that
efficiently compete with human players. Such games are
suitable because of their complexity and the opportunities
they offer to explore winning strategies. Furthermore,
evaluation criteria are typically known, whereas the game
environment, the moves and the termination conditions
can be simulated by software.

Scientists have long tried to create expert artificial
players for strategy games. In 1950, Shannon began to
study how computers could play chess and proposed the
idea of using a value function to compete with human
players [1]. In 1959, Samuel created a checkers program
that tried to find �the highest point in multidimensional
scoring space� [2]. Although the experiments of Samuel�s
research were impressive they did not exert significant
influence (at that time). It was in 1988 when Sutton
formulated the TD(λ) method for temporal difference

learning [3]. Since then, more games such as Tetris,
Blackjack, Othello [4], chess [5], backgammon [6-7]
were analysed by applying TD(λ) to improve their
performance. During the 1990s, IBM made strenuous
efforts to develop (first with Deep Thought, later with
Deep Blue) a chess program comparable to the best
human player. Whether it succeeded is still mainly a
philosophical and technological question.

One of the most successful and promising applications
of TD(λ) is TD-Gammon [6-7] for the game of
backgammon. Using reinforcement learning (RL)
techniques and after training with 1.5 million self-
playing games, a performance comparable to that
demonstrated by backgammon world champions was
achieved.

The advantage of RL to other learning methods is that
it requires little ad hoc programming effort for system
training. Training is achieved by a system�s interaction
with its environment and it is the system itself that
detects which actions to take via trial and error, with
limited need for direct human involvement. RL
comprehends changes of the learning environment
without having to be re-programmed from scratch.

As far as strategy games are concerned, the most
important and critical point of them is to select and
implement the computer�s strategy during the game. The
term strategy stands for the selection of the computer�s
next move considering its current situation, the
opponent�s situation, consequences of that move and
possible next moves of the opponent. RL helps solve this
problem by formulating strategies in terms of policies.

In this paper we continue the research of Kalles and
Kanellopoulos [8] on the application of RL to the design
of a new strategy game (see section below, for a detailed
game description). The research demonstrated that, when
trained with self-playing games, both players had nearly
equal opportunities to win and neither player enjoyed a

Dimitris Kalles1,2, Eirini Ntoutsi2,3
AHEAD Relationship Mediators SA, Patras, GR

Department of Computer Engineering and Informatics, University of Patras, GR
Computer Technology Institute, Patras, GR

Contact: dkalles@acm.org, ntoutsi@ceid.upatras.gr

pole position advantage. In this paper, we aim to explore
the extent to which this conclusion continues to stand for
the case one of the opponents is human. Specifically, we
will try to give answers to questions such as: (1) Are
games played from a computer against itself enough to
accomplish learning? (2) Which case is more suitable for
learning, a computer playing against itself or a computer
playing against a human player? (3) Does playing with
human players improve the computer performance much
more than playing against itself?

The rest of this paper is organised in six sections. The
next section presents the details of the game. It includes
the basic components of the game, rules for legal pawn
movements, special characteristics and playability issues.
The third section refers to the game analysis; which
methods are used and how they could lead towards
learning. The fourth section describes training issues and
experimental results. The fifth section refers to the
human factor and how this affects the learning procedure.
Finally, we put all the details together and discuss lines of
future research that have been deemed worthy of
following.

2. A description of the game

We now describe a new game, designed by one of the

authors, first presented in [8]. It is a deterministic game,
which seems easier than chess and backgammon to
analyze. Its main difficulty arises from the fact that,
during analysis, moves must be stochastically generated
to ensure sufficient exploration of the state space, unlike
in case of the backgammon where moves are due to dices.
The challenge of designing a game with sufficient depth,
and exploring its playability in respect of strategies, were
the main reasons why we turned to a new game rather
than use some of the already well known ones.

The game is played on a square board of size n, by two
players: black and white. Two square bases of size a are
located on opposite board corners. At game kick-off each
player possesses β pawns. For the rest of the paper we
adopt the assumption that the white player is the owner of
the lower-left base (and of white pawns) while the black
player is the owner of the upper-right base (and of black
pawns). Each player�s goal is to move a pawn into its
opponent�s base; the first player who achieves this is the
winner.

A pawn can move to an empty square that is vertically
or horizontally adjacent, provided that the maximum
distance from its base is not decreased (so, backward
moves are not allowed). A pawn that has no legal moves
is lost (more than one pawn may be lost in one round). If
some player runs out of pawns the opponent is considered
to be the winner.

Legal moves can be categorized in moves of leaving
the base and of moving from one square to another. The
base is considered as a single square and not as a set of
squares, therefore every pawn of the base can move at
one step to any of the adjacent to the base free squares.

Figure 1. Examples and counterexamples of moves.

Examples and counterexamples of moves are shown in
Figure 1. The upper board demonstrates a legal and an
illegal move for the pawn pointed by the arrow (this
pawn can move �backward� only to the ! square but not
to the ! square because its distance from base is
decreased). The lower boards demonstrate moves that
cause losses of pawns (with arrows showing pawn
casualties). Such (loss incurring) moves bring about the
direct adjustment of the moving pawn with some pawn of
the opponent. In such cases the �trapped� pawn
automatically draws away from the game. As a by-
product of this rule, when there is no free square next to
the base, the rest of the pawns of the base are lost as is
shown in the bottom right game board.

3. A brief analysis of the game

The initial challenge was to design and implement a

system that learns how to play through a number of self �
playing games. Reinforcement Learning is ideal for this
purpose since it is characterized as learning that takes
place via continuous interaction of the learning agent
with its environment. The agent itself detects which
actions to take via trial and error learning.

The game is a discrete Markov procedure, since there
are finite states and moves, and since each episode does
terminate. The a priori knowledge of the system consists
of the rules only. The agent�s goal is to learn a policy π: S
" A (S is the state space and A is the space of legal
moves), that will maximize the expected sum of rewards

in a specific time; this is called an optimal policy. A
policy determines which action should be taken next
given the current state of the environment.

The move selection is critical and affects the whole
learning procedure. The agent has to decide whether to
choose an action that will straightforward maximize its
reward or to try a new action for which it does not know
anything but may prove to be better (the first case is
known as exploitation, whereas the second is known as
exploration). The answer to the above question is (in our
case, too) both. Specifically, the system uses an ε-greedy
policy, with ε=0.9, which means that in 90% of the cases
the system chooses the best-valued action, while in the
rest 10% it chooses a random one.

The agent estimates whether it is good for it to be in a
specific position using the Vπ(s) value function.
According to Vπ(s), the value of the state s of the strategy
π equals to the sum of the expected rewards starting from
state s and following the strategy π. Specifically, the
agent is interesting in discovering the optimal strategy
(the strategy that will maximize the expected sum of
rewards) and for this it uses the optimal value function
Vπ(s). Learning comes from the experience in playing or
training from samples of positions taken from the game.
Because of the high dimensionality and large state space
of this computation we use neural networks as a
generalization technique, to interpolate between game
board situations.

In fact, two neural networks were used, one for each
player, because each player has a unique state space.
Back-propagation was used, setting the RL parameters to
γ=0.95 and λ=0.5.The input layer nodes are the board
positions for the next possible move, totalling n2-2a2+10.
The hidden layer consists of half as many hidden nodes,
whereas the output node has only one node, which can be
regarded as the probability of winning beginning from a
specific game-board configuration and then taking on a
specific move.

At the beginning all states have the same value except
for the final states. After each move the values are
updated through the temporal-difference learning rule.
The algorithm in use is TD(λ), where λ determines the
reduction degree of assigning credit to some action. Using
λ only, the eligible states (eligibility traces can be seen as
a temporary record of the occurrence of an event, e.g.
visiting a state) or actions are assigned credit or blame
when a TD error occurs. We used the technique of
replacing eligibility traces instead of accumulating them,
because the latter approach has been known to inhibit
learning, when a repeated wrong action generates a large
bad trace.

4. Training issues in self-playing games

Initial experiments [8] had suggested that both

computer players have nearly equal opportunities to win.
However, when we tested the game performance against
a human player we realized that the human player was
winning almost always, independently of the moves the
black player was following. Obviously the network
training was not enough. Tesauro [6-7] reached a high
level performance in his TD-Gammon after playing a
huge number (1,500,000) of self-playing games. And, as
Sutton and Barto [9] point out, in the case of the first
300,000 games, TD-Gammon performance was poor,
games lasted hundreds or thousands of moves before one
side or the other won, almost by accident.

The above symptoms arose in our game as we noticed
that the initial games lasted hundred of moves with the
majority of moves being cyclical between two squares.
So, we kept on the training procedure and in order to
speed up learning we changed the way of assigning
reward. In the initial experiments, each action-move is
given reward �1, unless the resulting state is a final one;
then the reward is +50 for the winner�s last move and �
50 for the loser�s last move. The new reward assignment
procedure was more explicit; each action-move is
assigned reward not only in final states but also during
the learning procedure when it loses some pawn or when
it is next to the opponent�s base. Our intention was to
lead the agent to learn quickly that these movements are
poor and to avoid them in the future.

The new training results showed a clear improvement
in computer playing even in the case it had to compete
with a human player. We identified four obvious points
of improvement towards the agent�s goal to establish an
advantage in winning the game.

First, the computer player now clearly attempts to
protect its base by covering the next-to-base squares in
case an opponent�s pawn approaches them. This is a
clear sign that the computer player has learned to protect
itself against specific attacks.

Second, the back-n-forth moves were significantly
decreased. Currently, the average number of moves per
game has been nearly halved.

Third, the area covered by the computer player during
the game has been significantly expanded. The computer
player does not stop short at squares lying near its base
but expands its moves so as to cover distant squares too.
This is another sign that the computer player has begun
to understand its goal to possess the opponent�s base.

Fourth, the computer player protects its pawns. More
specifically, it moves carefully so as to avoid adjacency
with opponent�s pawns, which might cause their loss.
Towards this direction the computer player does not

occupy all next to (its) base squares; note that due to
game rules, when all next-to-base squares are occupied,
the remaining base pawns are lost. In previous
experiments, the computer player played usually with
four pawns only, as it lost all the others when it covered
all next-to-base squares (see also Figure 1 for such an
example).

5. The human factor in learning acceleration

The above results were all signs of game performance

improvement. Aiming at greater improvement and to
speed up learning we decided to examine the impact of
human interference to the learning procedure. Our
question was: how can a human player improve the game
performance and speed up the learning procedure? And,
we ask, does this have the same influence as adding
handcrafted features (note that the latter has been shown
to accelerate learning [6-7]).

In the proposed game we use two ways to disturb
regularity: exploration and the human factor.

Training the system by self-playing games restricts the
exploration to very narrow portions of the state space, due
to the absence of some strong �regularity disturbance�
factor. In the case of backgammon, dice play such a role
and this is believed to be vital in the success of TD-
Gammon. Dice produce a high degree of variability in the
positions seen during training and, as a result, the learner
explores more of the state space, leading to the discovery
of improved evaluations and new strategies.

Through exploration the computer chooses some
moves randomly. The main drawback of exploration is
that it is very slow and there is no orderly exposure to
skilled opponents, therefore the danger of over-fitting (in
rather unimportant areas) is significant.

 The human player gives the computer opportunities to
explore a large state space different from what it has seen
by playing against itself. A human opponent can create
long-term viewed playing sequences that help a computer
player to follow a loosely guided unexplored path.
Furthermore the human player may play experimenting
with a wealth of strategies and tactics, therefore reducing
the risk of over-fitting during learning.

For the experiments we used a game of dimensions
8x2x10 (8: the game board dimension, 2: the base
dimension, 10: the number of pawns of each player at
game kick-off). Since our game is a new one, we had to
train it from scratch. We used two ways to do that, by
generating self-playing games and by alternating self-
playing and human-playing games, in line with the
observations above.

The experimental results presented below reinforce our
approach. After training the network with 119,000 self-

playing games, we trained it by playing alternatively self-
playing games and human-computer games. More
specifically, we followed the training sequence shown in
Figure 2 (where light-shaded squares correspond to
human-computer games).

The training sequence

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

Training steps

(lo
g1

0)
 N

um
be

r o
f g

am
es

Figure 2. The training sequence of self-playing and
human-computer games.

In all these human-computer games (the even-
numbered steps in the training sequence of Figure 2) the
human had a specific goal: to possess the opponent�s base
by capturing a particular next-to-base square. Our aim
was to check whether the computer could learn from
human attacks and how this would affect the learning
procedure. The number of human-computer games used
for training was comparably smaller than the number of
computer games. Our intention was to give the computer
the opportunity to face situations different from those it
had explored.

After playing 160 human-computer games in
combination with 18,160 self-playing games (totaling
137,160 games) the computer�s performance has been
rapidly improved, as it almost never allowed the human
to enter its base through that particular square (see
Figure 3 for such a game instance).

Figure 3. Performance improvement show case.

An example of game performance improvement is
presented in Figure 3. In the left side we show the
original performance of the game before human
interference, while on the right we show the improved
performance of the game after human interference. As we
see, in the case of human-assisted learning, the computer

player has covered a much larger area during the game,
effectively displaying a superior defensive behavior.
Furthermore, the computer player has protected better its
base from human-computer player attacks; note that the
shaded base square before human interference �at the
left- was uncovered while in the new setting it is
protected. The last observation is a clear sign that the
computer player has learned to protect itself against
specific attacks.

To disambiguate the human impact in learning we also
ran 137,160 separate self-playing games and we
compared them with the above experiments. Experiments
showed that in the second case the computer had not
learned something specific. There was little
improvement in its way of playing but this improvement
was general and does not correspond to any specific
strategy. This happens due to the slow speed of learning;
the computer learns through self-playing games but such
kind of learning can only be useful after a long number of
self-playing games.

Our experiments suggest that learning can be
accelerated through human interference, which acts as a
way of exploration of new states. This result is extremely
useful as RL is known to suffer from the problem of large
training times, and we now demonstrate that we can
aggressively fine-tune its rather-slow-guided search.

6. Experimental results

The findings are quite encouraging for learning

acceleration. But does human interference contribute to
the long-term game performance improvement or do we
risk degrading the generality of computer playing? The
latter would be surely achieved through self-playing
games although the number of games required is
extremely large. To explore this question we ran more
experiments using the neural network weights.
Specifically, we ran four sets of experiments, each set
consisting of 1,000 computer-vs-computer games. Each
set was based on a different training configuration
though; see Table 1 for a list of configurations and related
performance results.

Table 1. Cross-test of winning learning strategies.

White player (with)

Black player (with)

computer training

54.2%
computer training

45.8%
computer and human training

55.0%
computer and human training

45.0%
computer training

50.3%
computer and human training

49.7%
computer and human training

52.5%
computer training

47.5%

The term �white player with computer and human

training� means that the white computer player bases its
play on the knowledge received from the 137,160
compound human-computer games mentioned above (see
training sequence in Figure 2), whereas the term �white
player with computer training� means that the white
computer player bases its play on the knowledge received
from the 137,160 self-playing games mentioned above.

The above experiments show that human involvement
should be carefully exercised to add value to computer
performance. The human (white player) experience
proved to be significantly helpful in the case of the black
player; the percentage of the black player winning games
has been increased from 45.8% to 49.7%. The opposite
happens with the white player, whose initial goal was to
train the black player with a particular defending
strategy. Towards this aim, the white player was rather
risky by not exploring new states, and, instead, following
the minimal path that would ensure it the black�s base
possession. Performance percentage was decreased from
54.2% of winning games to 52.5%.

Another interesting point of the above experimental
results is the performance percentage for the case where
the training of both computer players contains games
against a human opponent. We would expect a reduction
in the white player�s performance, but we were surprised
to observe its performance increasing from 54.2% of
winning games to 55%, which contradicts our intuition.
A reason could be the (comparatively) small amount of
experiments, so that a decrease of 0.8% may be actually
misguiding.

7. Design assistance

Playing a game successfully requires getting and

keeping the attention of a player by challenging his
intellectual abilities. Some of them we practice daily: we
search for solutions, we combine them, we trade-off, we
plan, we observe patterns and we learn. Getting the right
mix of these activities might lead to a nice game, but this

is a question of more a qualitative than quantitative
nature. Short of pitting human players against each other,
armed with new set of rules each time the game designer
needs to modify them, one can expect that prescribing a
methodology whereby game designs can be simulated and
evaluated in some "objective" norms, could be a means to
drastically trim down initial design cycles. We could then
only concentrate in human responses when some solid
knowledge about game playing is already in place.
However, game openings can be very tedious, therefore,
we propose that RL can be of great value.

Verifying a design should be best thought of as a
process to automate the initial design steps, or as a "basic
competence" test for the design itself. There will be no
substitute for the talented designer but there will be a
better output if we can take the boring evaluation chores
out of the agenda and allow him to concentrate in
essence.

This particular direction in game design is being
proposed by our work. By designing a program that can
evolve winning strategies (and tactics, especially end-
game ones) we can expect that we will have designed a
modest opponent to the human game designer who will
use fewer training rounds to explore the playability of a
game if new rules have to be added or constraints must be
relaxed. We do not aim to improve productivity by
providing fine details, which we doubt we can, but by
being able to fast create knowledgeable opponents that
can help human-generated exploration.

8. Conclusion

Experimental results presented in this paper show that

computer performance can take advantage of human
knowledge, even when such knowledge is presented to a
program in a loosely structured way. By obtaining such
knowledge from a breadth of (human) opponents, over-
fitting problems that can arise due to too-focused
experience can be avoided.

We expect to speed up learning by exploring
Explanation Based Learning techniques. A combination
of RL and EBL could benefit the game with faster
learning and the ability to scale to large state spaces in a
more structured manner [10]. Even though we have not
observed the particular methodology being taken up by
many other researchers, we expect that its principle of
symbolic-assisted chunking of the state space is
important.

A parallel improvement of practical value is to develop
a benchmark computer player; however, this is best
viewed as a by-product of the game design improvement.

We are confident, however, that this is a most
promising research direction with widespread application

implications, especially so in simulation of educational
environments.

9. References

[1] C. Shannon. �Programming a computer for playing chess�,
Philosophical Magazine, Vol. 41 (4), pp. 265-275, 1950.
[2] A. Samuel. �Some Studies in Machine Learning Using the
Game of Checkers�, IBM Journal of Research and
Development Vol. 3, pp. 210-229, 1959.
[3] R.S. Sutton. �Learning to Predict by the Methods of
Temporal Differences�, Machine Learning, Vol. 3, pp. 9-44,
1988.
[4] A. Leouski. �Learning of Position Evaluation in the Game
of Othelo�, Master�s project: University of Massachusetts,
Amherst, 1995.
[5] S. Thrun. �Learning to Play the Game of Chess�. Advances
in Neural Information Processing Systems 7, 1995.
[6] G. Tesauro. �Practical issues in temporal difference
learning�, Machine Learning, Vol. 8, No. 3-4, 1992.
[7] G. Tesauro. �Temporal Difference Learning and TD-
Gammon�, Communications of the ACM, Vol. 38, No 3, 1995.
[8] D. Kalles and P. Kanellopoulos. �On Verifying Game
Design and Playing Strategies using Reinforcement Learning�,
ACM Symposium on Applied Computing, special track on
Artificial Intelligence and Computation Logic, Las Vegas,
March 2001.
[9] R. Sutton and A. Barto. �Reinforcement Learning - An
Introduction�, MIT Press, Cambridge, Massachusetts, 1998.
[10] T. Dietterich, N. Flann. �Explanation-Based Learning and
Reinforcement Learning: A Unified View �, Machine Learning,
Vol. 28, 1997.

