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Abstract 
Nowadays, the amount of patterns extracted 
from Knowledge Discovery and Data Mining 
(KDD) is rapidly growing, thus imposing new 
challenges regarding their management. One of 
the most important operations on pattern sets (or 
pattern bases) is that of similarity comparison. 
In our research, we investigate issues regarding 
pattern comparison and the degree of distance 
preservation in pattern space with respect to the 
original data space.  

1. Motivation 
In our days a huge quantity of raw data is 
collected from different application domains 
(business, scientific, etc.). Due to their quantity 
and complexity, it is not simple for humans to 
thoroughly investigate these data collections. 
Knowledge Discovery and Data Mining (KDD) 
provides a solution to this problem by generating 
compact and rich in semantics representations of 
raw data, called patterns (decision trees, 
association rules, frequent itemsets, clusters, 
neural networks etc.) [3]. Patterns preserve 
information existing in the original raw dataset; 
however, the degree of preservation strongly 
depends on the parameters of the KDD algorithm 
used for their extraction. For example, in 
frequent itemset mining one can get different 
subsets of the itemset lattice by tuning the 
minimum support threshold, in classification one 
can get different sub-trees of the complete 
decision tree by applying different pruning levels 
(in order to avoid overfitting), and so on. 

The need for efficient management of 
patterns has become compulsory nowadays due 
to the spreading of the data mining technology. 
Management includes representation, storage, 
retrieval, indexing and visualization issues. If 
possible, patterns should be considered as “first-

class citizens” in data / pattern management 
systems [3].  

One of the most important operations on 
patterns is that of comparison, i.e. detecting how 
similar two patterns are to each other. Defining a 
similarity / distance operator for patterns is not 
straightforward since distance measures for 
several pattern types must be defined (for 
example, decision trees, clusters, association 
rules and even clusters of association rules) 
(Figure 1). Apart from the dissimilarity between 
patterns of the same type, the dissimilarity 
between patterns of different types (e.g. between 
a decision tree and a cluster) should be 
considered as well. Another interesting issue is 
whether and how dissimilarity in pattern space 
depends on the dissimilarity in the original data 
space (where patterns were extracted from). 

 

 
(a) Clusters of data points 

 
(b) Clusters of association rules 

Figure 1. Examples of different pattern types 
 
The aim of this research is to study pattern 

comparison issues and examine the feasibility of 
a generic framework for pattern comparison. 
Furthermore, issues regarding the preservation of 
distance from data to pattern space will be 
investigated. 

2. Importance – Applications – 
Related Work 

As already mentioned, the similarity / distance 
operation is one of the most important among 
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several interesting operations that could be 
defined over patterns and has many applications. 

Defining a similarity operator between 
patterns could be used to express similarity 
queries over a pattern set (or pattern-base) 
including k-nearest neighbour queries (i.e. find 
the k-most similar pattern(s) to a query pattern) 
and range queries (i.e. find the most similar 
pattern(s) to a given pattern within a given 
range). The efficient computation of dissimilarity 
is one of the core issues of a Pattern Base 
Management System (PBMS) with applications 
in indexing, as well as in retrieval and 
visualization [3], [8]. 

Another application is monitoring and 
detecting pattern changes (e.g. detecting changes 
in customers’ behaviour over time). This is 
useful, for example, in KDD synchronization, in 
order to keep patterns up to date with respect to 
the corresponding raw data (e.g. synchronizing 
patterns only when the corresponding raw data 
have significantly changed). It is also useful to 
pattern base versioning support (e.g. getting a 
differential backup of the pattern base or 
comparing consequent versions of a pattern 
base).  

A common technique for the comparison of 
datasets involves the corresponding pattern  sets 
extracted from these datasets through a data 
mining algorithm (e.g. comparing images – in 
data space – through a set of features – in pattern 
space) [2], [5], [6], [7]. This approach sounds 
reasonable since patterns reflect the information 
contained in raw data and therefore dissimilarity 
in pattern space could be considered as a 
measure of dissimilarity in the original data 
space. Discovering a mapping (either exact or 
approximate) between the dissimilarity in data 
and pattern space is really useful. For example, 
we could avoid the hard task of comparing the 
original datasets whenever the corresponding 
pattern sets are available for comparison or even 
avoid the hard task of mining a dataset whenever 
it is found to be similar to another dataset for 
which the results of mining are already available. 

Another application refers to the distributed 
data mining domain [5], [6], [7]. Here, mining is 
not centralized since locally strong patterns 
should be preserved. A common approach is to 
“cluster” similar datasets and mine afterwards 
each cluster independently [6]. For the 
comparison of the datasets, even the original data 
space or the corresponding pattern space could 
be involved [6]. Another idea is based on mining 
each database independently and “cluster” 
afterwards the sets of patterns based on their 

dissimilarity. This is also applicable in the secure 
mining domain since only patterns, and not the 
original raw data are required. Depending on the 
mining parameters, it is hard to recover the 
original raw dataset (in [9], it is proved that 
deciding whether there is a dataset compatible 
with a given set of frequent itemsets is NP-hard). 

Currently, the experimental comparison 
between two algorithms (or the same algorithm 
with different criteria) is limited to interpreting 
‘visual’ representations of the results. However, 
algorithms’ evaluation could be achieved by 
comparing their results over the same raw 
dataset. Depending on the dataset characteristics 
(e.g. dense vs. sparse datasets) an algorithm 
might be more suitable than another. Therefore, 
one might need to experiment with many 
algorithms and evaluate their results in order to 
conclude to the algorithm that best fits his/her 
needs (Figure 2). 

 
 

Clustering 1 

Clustering 2 

 
Figure 2. Comparing results of data mining 

algorithms over the same raw dataset 
 
As an extension of this application consider 

the scenario where one might want to acquire a 
specific target pattern set from a given set of raw 
data.  

 

 
Figure 3. Comparing results of data mining 

algorithms with respect to a target pattern set 
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One solution is to apply different data mining 
algorithms (or even the same algorithm with 
different criteria e.g. minimum support in case of 
frequent itemset mining) and keep the one that 
its output is most similar to the target pattern set 
(Figure 3). 

Besides ad hoc approaches for particular 
cases, to the best of our knowledge the single 
related work to define a framework for the 
comparison of patterns is proposed in [2]. In this 
work, authors propose FOCUS, a framework for 
measuring the deviation between two datasets in 
terms of the pattern sets (‘models’ in authors’ 
terminology) they induce. The central idea of 
their work is to first represent patterns induced 
by the datasets in terms of a structure and a 
measure component (called, 2-component 
property). The structure component identifies 
“interesting regions” and the measure component 
summarizes the subset of the data that is mapped 
to each region. If the patterns have different 
structure components, a first step is needed to 
make them identical by extending them to their 
greatest common refinement (GCR) - in case of 
frequent itemsets, for example, the GCR of two 
sets of itemsets is their union. Then the deviation 
between the datasets is considered to be equal to 
the deviation between them over the set of all 
regions in the GCR. A difference function that 
calculates the deviation of two regions with 
identical structure and an aggregate function that 
aggregates all these differences are required. 
Referring to the difference function, authors in 
[2] provide two instantiations, the absolute 
difference and the scaled difference function, 
whereas for the aggregate function sum and max 
could be used. By tuning the difference and the 
aggregate functions, various distance functions 
can be defined within this framework.  

The FOCUS framework assumes that the 
GCR of the patterns to be compared can be 
defined and provides, as examples, frequent 
itemsets, decision trees and clusters. 
Furthermore, the computation of pattern 
deviation requires the measures of all regions in 
GCR to be computed with respect to both 
datasets, so the comparison in pattern space also 
involves the original data space.  

3. Research Agenda and Preliminary 
Results 

3.1 A framework for pattern comparison 

Our approach to the problem of defining a 
general framework for pattern comparison is 

based on the logical model proposed in [8] where 
each pattern type pt includes a structure schema 
ss, defining the pattern space, and a measure 
schema ms, describing the measures that quantify 
the quality of the source data representation 
achieved by each pattern. (We mention only the 
components of the framework used for the 
assessment of dissimilarity between patterns - 
see [8] for a detailed description of the model.) A 
pattern p of type pt instantiates the structure 
schema and the measure schema, thus leading to 
a structure, p.s, and a measure, p.m. 

We distinguish two types of dissimilarity 
between patterns depending on the structure of 
the patterns to be compared: comparison 
between simple patterns (e.g. between two 
association rules) and comparison between 
complex patterns - complex patterns are patterns 
whose structure consists of other patterns, for 
example a cluster of association rules (see Figure 
1). The notion of dissimilarity can be further 
distinguished into that between patterns of the 
same pattern type (e.g. two decision trees, two 
clusters etc.) and that between patterns of 
different pattern types (e.g. a decision tree with a 
cluster). 

In [1], we propose a framework for the 
assessment of dissimilarity between either 
simple or complex patterns. We adopt the 2-
component property introduced by FOCUS [2], 
thus we express patterns in terms of a structure 
and a measure component. The dissimilarity 
between patterns is computed by taking into 
account both the dissimilarity between their 
structures and the dissimilarity between their 
measures. 
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Figure 4. Measuring dissimilarity between patterns 

 
As is illustrated in Figure 4, the dissimilarity 

is evaluated by aggregating dissimilarities 
between measure and structure components, by 
means of an aggregation function faggr. 

According to [1], the dissimilarity between 
two simple patterns of the same type pt can be 
computed as follows: 
Dis(p1, p2) = faggr(disstruct(p1.s,p2.s), dismeas(p1.m,p2.m)) 
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If the two patterns have the same structural 
component, then their dissimilarity equals to the 
measures’ dissimilarity. In the general case, 
however, the patterns to be compared have 
different structural components, thus a 
preliminary step is needed to “reconcile” the two 
structures so as to make them comparable. 

Evaluation of dissimilarity between complex 
patterns follows the same basic rationale shown 
in Figure 4. However, the structure of complex 
patterns now consists of several other patterns. In 
our framework, the dissimilarity between 
structures of complex patterns depends in turn on 
the dissimilarity between component patterns. 
Dissimilarity is conceptually evaluated in a 
bottom-up fashion, and can be adapted to 
specific needs/constraints by acting on two 
fundamental abstractions:  

- the coupling type, which is used to establish 
how component patterns can be matched; 

- the aggregation logic, which is used to 
combine the dissimilarity scores obtained for 
coupled component patterns into a single overall 
score representing the dissimilarity between the 
complex patterns. 

Depending on the instantiations of the 
different blocks of the framework (coupling type, 
aggregation logic, structure dissimilarity and 
measure dissimilarity) various distance functions 
configurations can be defined within it.  

Our framework extends FOCUS, which is 
limited to the comparison of patterns for which 
the GCR can be defined, since it allows for a 
wide variety of matching criteria (coupling type). 
Furthermore, unlike FOCUS, our framework 
supports the recursive definition of arbitrarily 
complex patterns. Also, it works exclusively in 
the pattern space, in contrast to FOCUS that 
involves both the pattern and the data space from 
which patterns were extracted. Such a property is 
useful in case of an autonomous PBMS [3].  

We are currently working on comparing sets 
of frequent itemsets using the framework idea. 
According to preliminary results, our framework 
can capture the “controlled” changes of the 
pattern set, as illustrated in Figure 5. 

The framework proposed in [1] could be 
extended towards two directions:  

a) support the comparison between patterns 
of different types and  

b) relate the distance in pattern space with the 
distance in the corresponding raw data space. 

As a scenario referring to the first direction, 
consider the comparison between a decision tree 
and a clustering scheme.  As a scenario of the 
second direction, consider studying how the 

parameters of the data mining algorithm affect 
the information preserved in the extracted 
patterns (lossless vs. lossy transformations).  
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Figure 5. Preliminary results on capturing changes in 

pattern space 

3.2 Dissimilarity between different pattern 
types 

The comparison between patterns of different 
types is an open and challenging issue since, to 
our knowledge, there is no related work. We plan 
to transform patterns into a common basis (a 
graph model could be used for this purpose) and 
perform the comparison between the transformed 
patterns using the framework. Another idea is to 
transform patterns of one type to the other type, 
when applicable, and reduce the problem to that 
of comparing patterns of the same pattern type 
(e.g. when comparing a decision tree with a set 
of rules, the decision tree could be transformed 
firstly to the equivalent set of rules). We are 
currently investigating both directions. 

3.3 Relating dissimilarity in data and pattern 
spaces 

We are currently working on extending the 
framework proposed in [1] so as to relate 
dissimilarity in pattern space with that in the 
corresponding data space. From our point of 
view, the KDD procedure can be thought of as a 
transformation task that transforms data into 
knowledge. Depending on the transformation 
parameters, i.e. data mining algorithms 
parameters, we distinguish between lossless and 
lossy transformations. The former preserve 
information in the pattern space (e.g. an un-
pruned decision tree that completely fits on the 

49



training set or an itemset lattice generated with 
no minimum support threshold), whereas the 
latter lose some of the information existing in the 
original data space (e.g. a pruned decision tree or 
an itemset lattice generated with a minimum 
support threshold). 

Ideally, we would like the dissimilarity in 
pattern space to follow that in the original data 
space. Indeed, preliminary results regarding the 
frequent itemsets case illustrate such behaviour. 

Finally, we plan to manifest the applicability 
and generality of our framework by including 
scenarios of comparing patterns in different 
application domains (decision trees, time series, 
moving object trajectories, web site structures 
and contents). 

4. Concluding Remarks 
In this paper we presented our ongoing work on 
measuring and evaluating dissimilarity in data 
and pattern spaces. Through application 
examples, we demonstrated the importance of 
defining a general framework for the comparison 
of patterns. Towards this aim, we presented a 
framework for measuring dissimilarity between 
both simple and complex patterns. 

Next steps include:  
i) manifest the applicability of the framework 

by applying it to other pattern types apart from 
clusters and frequent itemsets (e.g. decision trees 
and moving objects trajectories, web sites 
contents)  

ii) extend the framework so as to support 
comparison between patterns of different pattern 
types, and  

iii) extend the framework so as to relate 
dissimilarity in pattern space with that in data 
space from which patterns were extracted.  

Our ultimate goal is a generic framework for 
measuring and evaluating dissimilarity in data 
and pattern spaces. 

5. Acknowledgments 
This research is partially supported by the Greek 
Ministry of Education and the European Union 

under a grant of the “Heracletos” EPEAEK II 
Programme (2003-06).  

6. References 
[1] I. Bartolini, P. Ciaccia, I. Ntoutsi, M. 

Patella, and Y. Theodoridis. “A Unified and 
Flexible Framework for Comparing Simple 
and Complex Patterns”. In Proceedings of 
PKDD’04 Conference, Pisa, Italy, 2004. 

[2] V. Ganti, J. Gehrke, R. Ramakrishnan, and 
W.-Y. Loh. “A Framework for Measuring 
Changes in Data Characteristics”. In 
Proceedings of PODS’99 Symposium, 
Philadelphia, PA, USA, 1999. 

[3] Y. Theodoridis, M. Vazirgiannis, P. 
Vassiliadis, B. Catania, and S. Rizzi. “A 
manifesto for pattern bases”. PANDA 
Technical Report TR-2003-03, 2003. 
Available at http://dke.cti.gr/panda.  

[4] C. Faloutsos, M. Ranganathan and Y. 
Manolopoulos. “Fast Subsequence Matching 
in Time-Series Databases”. In Proceedings 
of ACM SIGMOD’94 Conference, 
Minneapolis, MN, USA, 1994. 

[5] S. Parthasarathy and M. Ogihara. 
“Clustering Distributed Homogeneous 
Datasets”, In Proceedings of PKDD’00 
Conference, Lyon, France, 2000. 

[6] T. Li, S. Zhu, and M. Ogihara. “A New 
Distributed Data Mining Model Based on 
Similarity”, In Proceedings of ACM-SAC’03 
Symposium, Melbourne, FL, USA, 2003. 

[7] X. Wu, C. Zhang, and S. Zhang. “Database 
classification for multi-database mining”, 
Information Systems, 30(2005) pages 71-88. 

[8] S. Rizzi, E. Bertino, B. Catania, M. 
Golfarelli, M. Halkidi, M. Terrovitis, P. 
Vassiliadis, M. Vazirgiannis, and E. 
Vrachnos. “Towards a Logical Model for 
Patterns”. In Proceedings of ER’03 
Conference, Chicago, IL, USA, 2003. 

[9] T. Mielikäinen. “On Inverse Frequent Set 
Mining”. In Proceedings of PPDM’03 
Workshop, Melbourne, FL, USA, 2003. 

 
 

50




