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ABSTRACT
There is much recent work on detecting and tracking changes
in clusters, often based on the study of their spatiotemporal
properties. For the many applications where cluster change
is relevant, among them customer relationship management,
fraud detection and marketing, it is also necessary to provide
insights about the nature of change: Is a cluster correspond-
ing to a group of customers simply disappearing or are its
members migrating to other clusters? Is a new emerging
cluster reflecting a new target group of customers or does it
rather consist of existing customers whose preferences shift?
To answer such questions, we propose the MONIC frame-
work for modelling and tracking of cluster transitions. Our
cluster transition model encompasses changes that involve
more than one cluster, thus allowing for insights on clus-
ter change in the whole clustering. Our transition track-
ing mechanism is not based on the topological properties
of clusters, which are only available for some types of clus-
tering, but on the contents of the underlying data stream.
We present our first results on monitoring cluster transitions
over the ACM digital library.

Keywords
Cluster change detection, cluster transitions, data streams,
clusters, temporal analysis

1. INTRODUCTION
In recent years, it has been recognized that the clusters

discovered in many real applications are affected by changes
in the underlying population of customer transactions, user
activities, network accesses or documents. Much of the re-
search in this area has been devoted in adapting the clus-
ters to the changed population, so that they always reflect
the current state of the population. Recently, research has

∗A short version of this work appears in the Proceedings
of ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining(KDD’06)

expanded to encompass tracing and understanding of the
changes themselves, as means of gaining valuable insights
on the population and of supporting strategic decisions.

In Fig. 1, we visualize the challenge of understanding
changes: We depict clusters at four timepoints – they might
be user profiles or topics in news. New records are marked
with darker points; old records are forgotten, using a time
window of size 2. The clusters at each timepoint can be
easily seen. It is also apparent that changes have occurred.
However, finding the same cluster again, categorizing and
tracing the changes upon it is much more challenging: “Did
some clusters disappear? Or were they rather absorbed by
others? When is a cluster the same and when does it mu-
tate?” In this paper, we propose the MONIC framework for
the categorization and tracing of such cluster changes.

MONIC takes as input an accumulating data collection,
the records of which are subject to ageing, as is typical in
data stream applications. The records are clustered at con-
secutive data points and their evolution is monitored. To
this purpose, we first propose a typification of cluster tran-
sitions, in which we distinguish between internal transitions
that affect the cluster itself and external transitions that
concern the cluster with respect to other clusters. For the
detection of the transitions, we propose transition indicators
incorporated in a transition detection algorithm. Finally, we
use the detected transitions to draw conclusions about the
temporal properties of clusters and clusterings, such as life-
time and temporal stability.

Differently from spatiotemporal clustering methods [1, 15,
18] for cluster evolution, MONIC does not rely on a metric
space and on an appropriate trajectory for cluster transition
detection. Thus, MONIC is applicable to arbitrary types of
clusters and is independent of the clustering algorithm.

In Section 2, we discuss relevant research. In Section 3, we
introduce a cluster typification and then specify the notions
of overlap and matching for clusters derived from different
slots of the dataset. Section 4 contains our cluster transition
model and transition detection heuristics. In Section 5 we
present our first experiments. We conclude our study with
a summary and an outlook.

2. RELATED WORK
Research relevant to cluster monitoring can be categorized

into cluster change detection methods and spatiotemporal
clustering. We also discuss methods on the specific subject
of topic evolution [11, 13]. We omit methods on the compar-
ison of clusterings [12, 19], because they assume that cluster
matching has been already performed and that the clusters
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Figure 1: Data records at four timepoints

are derived upon the same dataset.

2.1 Methods for Cluster Change Detection
Ganti et al. propose the DEMON framework for data evo-

lution and monitoring across the temporal dimension [9].
DEMON focuses on detecting systematic vs. non-systematic
changes in data and on identifying the data blocks (along the
time dimension) which have to be processed by the miner in
order to extract new patterns. However, the emphasis is on
updating the knowledge base by detecting changes in data,
rather than understanding changes in patterns.

Ganti et al. also proposed the FOCUS framework [8],
which compares two datasets and computes a deviation mea-
sure between them based on the data mining models they
induce. Clusters comprise a special case of data mining mod-
els: Clusters are non-overlapping regions described through
a set of attributes (structure component) and correspond-
ing to a set of raw data (measure component). However,
the emphasis is on comparing datasets; understanding how
a cluster has evolved inside a new clustering is beyond the
scope of FOCUS.

The PANDA framework [5] delivers methods for the com-
parison of simple patterns, which are defined over raw data,
e.g. a cluster, and complex patterns, which are defined over
other patterns, e.g. a clustering. The distance between two
complex patterns is calculated in a bottom–up fashion based
on the distances of their component simple patterns. In
PANDA, however, the emphasis is on the generic and effi-
cient realization of comparisons between any complex pat-
terns rather than the detection and interpretation of cluster
transitions across the time axis.

The “Pattern Monitor” (PAM) [4] models patterns as
temporal, evolving objects obeying on a model of changes,
proposed in [3]. However, PAM focuses mostly on associa-
tion rules. We built upon this earlier work, especially for
the specification of the data considered at each timepoint.

2.2 Spatiotemporal Clustering
Neill et al. [15] study the emergence and stability of clus-

ters, observing spatial regions across the time axis. In their
approach, no clustering is performed; rather, cluster exis-
tence corresponds to negating the homogeneity assumption.
The detection process consists of identifying spatial regions
that have, for some property, higher counts than expected.
The set of regions is static and known in advance. The ex-
pected counts are inferred through time series analysis of
the past counts. A sliding time window is used to detect
changing, emerging and persistent clusters.

Yang et al. [18] detect change events upon clusters of sci-
entific data. They study “Spatial Object Association Pat-
terns” (SOAPs), which are graphs of different types, e.g.
cliques or stars. A SOAP is characterized by the number

of snapshots in data, where it occurs and the number of
instances in a snapshot that adhere to it. With this infor-
mation, the algorithm detects “formation” and “dissipation”
events, as well as cluster “continuation”. Their method is
not dedicated to clusters, rather it refers to patterns in gen-
eral.

Aggarwal [1] proposes a dedicated method for the de-
tection and study of cluster changes across the time axis
and across spatial dimensions (in a trajectory). Clusters
are modeled through kernel functions and their changes as
kernel density changes. More specifically, at each spatial
location, the kernel density is computed and two estimates
of density change are computed, the backward and the for-
ward estimate upon a sliding time window. Their difference
is the velocity density of the location. This is generalized
over multiple spatial locations as the global evolution co-
efficient. Aggarwal distinguishes different types of change,
with emphasis on (i) the velocity of change and (ii) the lo-
cations exhibiting the highest velocity – the epicenters. A
particular feature of the model is the identification of the
data properties that mostly contribute to change.

All approaches of this category operate upon a trajectory
and assume that the trajectory does not change: They ob-
serve a cluster as a “densification” of the trajectory and
then monitor changes in it. Hence, these methods cannot
be coupled with arbitrary clustering algorithms, e.g. general
purpose hierarchical algorithms 1 or density-based cluster-
ers.

Moreover, these methods juxtapose each cluster to the
trajectory and cannot trace interferences among clusters,
e.g. one cluster absorbing the other. Finally, these methods
cannot be applied if the feature space itself changes, e.g.
in text stream mining, where features are usually frequent
words.

Finally, Kalnis et al. [10] propose a special type of cluster
change, the “moving cluster”, whose contents may change
while its density function remains the same during its life-
time. They find moving clusters by tracing common data
records between clusters of consecutive timepoints. MONIC
is more general, since it encompasses several cluster transi-
tion types, allows for the “ageing” of old objects and does
not require that the density function of a moving cluster is
invariant.

2.3 Topic Evolution
Topic evolution is a subarea of topic detection and track-

ing [2]. Typically, a topic is a cluster, thus topic evolution is
a special case of cluster monitoring. The works most related

1Hierarchical clustering algorithms use an ultra-metric, so
their clusters cannot be studied outside the metric space of
the dataset that produced them.



to MONIC are the studies of [13, 11] on text clustering with
mixture models: A topic is described by the words dominant
to the distribution of the corresponding cluster, i.e. a topic
is a cluster label.

In [13], the emphasis is on adapting the clusters, while
[11] propose topic transition types and build a topic evo-
lution graph, in which transitions are traced. Here transi-
tions refer to changes in the cluster labels rather than the
clusters themselves. These methods are appropriate for ap-
plications where an intuitive cluster description, such as a
topic composed of words, can be extracted and traced over
time. This is not feasible for all applications, though. In the
general case, the evolution of a cluster’s mean and standard
deviation does not provide clues about cluster absorption or
splitting. For this reason, MONIC traces cluster transitions
by comparing the (weighted) contents of clusters. This al-
lows us to find transitions that cannot be traced by only
studying the distribution of the data or other summary in-
formation.

3. CLUSTER MODEL IN MONIC
MONIC models and traces the transitions of clusters built

upon an accumulating dataset. Data are collected and clus-
tered at timepoints t1, . . . , tn, whereupon old data may be
subjected to a “data ageing” function that assigns lower
weights to all or some of the past records, as is often the
case for topic detection and tracking methods [2]. The set
of features used for clustering may also change during the
period of observation, thus allowing for the inclusion of new
features and the removal of obsolete ones.

MONIC assumes re-clustering rather than cluster adap-
tation at each timepoint, so that both changes in existing
clusters and new clusters can be monitored. Moreover, tran-
sitions can be detected even when the underlying feature
space changes, i.e. when cluster adaptation is not possible.
To do so, we first specify the notion of “same” cluster or
rather cluster “match” across the time axis. Thereafter, we
present a set of cluster transitions upon those clusters.

3.1 Clusterings upon Ageing Data
A clustering over a dataset can be observed as a partition-

ing of the dataset into homogeneous groups. We concentrate
on “hard clustering”, in which each object belongs to exactly
one cluster, as opposed to “soft clustering”, where an object
is associated with each cluster by some probability or pos-
sibility value.

Definition 1 (Clustering). A “clustering” ζ is a par-
titioning of a dataset D into the partitions X1, X2, . . . , Xk

called “clusters” such that (a) Xu ∩ Xw = ∅ for all u 6= w,
(b) ∪k

u=1Xu = D and (c) some optimization criterion is sat-
isfied, e.g. the members of each cluster are more similar to
each other than to members of other clusters.

This is a set-theoretic definition of clusters. More elabo-
rate definitions are possible for clusters over a metric space,
whose topology can be used to specify proximity of objects.
As mentioned in Section 2, MONIC is intended for arbitrary
clustering methods. We therefore observe clusters as sets.

Def. 1 assumes a complete partitioning of the dataset.
Clusterers that ignore outliers are indirectly covered by as-
suming a preprocessing step that removes outliers.

Definition 2. Let t1 . . . , tn be the sequence of timepoints
under observation and let Di, i = 2 . . . , n be the set of data
records accumulated from ti−1 until ti, while D1 is the initial
dataset, so that Di ∩ Dj = ∅ for i 6= j. A “data ageing
function” assigns a weight age(x, ti) ∈ [0, 1] to data record x
at ti for each x ∈ ∪i

l=1Dl and for each ti.

age : ∪i
l=1Dl × {t1 . . . , tn} → [0, 1]

The weights assigned by the ageing function determine the
impact of each record upon clustering ζi ≡ ζi(∪

i
l=1Dl, age, ti).

This function covers sliding windows (the weights of records
outside the window are zero) but also more elaborate schemes,
e.g. [14] which considers re-appearances of each record and
assigns higher weights to recurring records.

3.2 Cluster Matching
Consider a cluster X discovered at a timepoint ti as part

of a clustering ζi. A “cluster transition” is a change effected
upon this cluster, when we observe it at a later timepoint
tj . The first step in identifying such a transition is the de-
tection of the cluster X in the corresponding clustering ζj

– if it is still existent. Hence, we define the notion of (non-
symmetric) “overlap” and of (best) “match” for a cluster,
before we proceed with a categorization of cluster transi-
tions.

Definition 3 (Cluster overlap). Let ζi, ζj (i 6= j)
be two clusterings derived at the timepoints ti, tj (i 6= j)
respectively, and let X ∈ ζi, Y ∈ ζj be two clusters. The
overlap of X to Y is the normalized sum of the weights of
their common records:

overlap(X,Y ) =

P
a∈X∩Y

age(a, tj)P
x∈X

age(x, tj)

In this definition, the function age() is used to assign
weights to the data records, as specified in Def. 2. It can be
also extended so as to restrict the computation of overlap
only on the cluster’s core points (cf. [7]) by assigning the
value of zero to all non-core points of the cluster X under
observation.

We can now define for each cluster found at a timepoint
ti, its best match at a later timepoint tj .

Definition 4 (Cluster match). Let X be a cluster
in the clustering ζi at timepoint ti and Y be a cluster in the
clustering ζj at timepoint tj > ti. Further, let τ ≡ τmatch ∈
[0.5, 1] be a threshold value. Y is “a match for X in ζj

subject to τ”, i.e. Y = matchτ (X, ζj) if and only if:
1) Y has the maximum overlap to X among all clusters in
ζj, i.e. overlap(X,Y ) = maxY ′∈ζj

{overlap(X, Y ′)} and
2) overlap(X,Y ) ≥ τ .
If there is no such Y ∈ ζj, then matchτ (X, ζj) = ∅.

By Def. 4, ζj can contain at most one match for each clus-
ter in ζi, although the same cluster in ζj can be the match
of more than one clusters in ζi. We restrict the threshold τ

to the interval [0.5, 1] to stress that a cluster is a match only
if it contains at least half of the pivot cluster members (e.g.
half of its members, if the members are weighted equally).
A tie can then occur only for τ = 0.5. Different tie breakers
can be used, choosing e.g. the Y that has the maximum re-
verse overlap overlap(Y,X) or the Y that is closest to X in
size.



4. CLUSTER TRANSITIONS IN MONIC
In MONIC , a cluster transition at a given timepoint is

a change experienced by a cluster that has been discovered
at an earlier timepoint. Such a transition may concern the
content and the form of the cluster, i.e. be “internal” to it, or
it may concern its relationship to the rest of the clustering,
i.e. be an “external” transition. We first define these types
of transitions and then introduce heuristics that trace them.

4.1 Detection of External Transitions
The “external transitions” of cluster X ∈ ζi with respect

to clustering ζj at tj > ti are defined in Table 1: A clus-
ter may disappear, be split into multiple clusters, be ab-
sorbed by some larger cluster or survive, whereupon inter-
nal transitions may occur (more on internal transitions on
Section 4.2).

According to Table 1, a cluster X ∈ ζi survives in ζj if (a)
there is a match for it in ζj subject to τ ≡ τmatch and (b)
this match does not cover any further cluster of ζi. If the
match covers at least one further cluster in ζi, then X has
been absorbed. If no match exists, then a split may have
occurred, i.e. the contents of X are in more than one clusters
of ζj . In this case, the overlaps must be no less than τsplit

(obviously: τsplit < τmatch), to prevent degenerate cases.
Moreover, all those clusters together must form a match for
X. If none of these cases occur, then X has disappeared.

All but the last transitions in Table 1 refer to changes of
a given cluster. Emerging clusters are detected after tracing
all external transitions for each cluster in ζi: Clusters in
ζj that are not the result of an external transitions can be
considered as “emerged clusters”.

In Fig. 2, we present our transition detector. For the
clusters in clustering ζi of ti (ζ i in the Figure), it detects
their external transitions on clustering ζ j ≡ ζj of tj >
ti. For each cluster X ∈ ζi, the detector performs some
initializations (the variables are explained later) and then
computes the overlap of X to each cluster of ζj (line 5). The
detector first looks for clusters in ζj that match X (lines 5–
8). In line 7, the best match for X is selected, according to
some tie breaking criterion, as already discussed after Def. 4.
So, each cluster in ζi has at most one survival candidate. If
no survival exists for the X cluster, clusters overlapping with
it for more than τsplit < τmatch are found (lines 10–12). If
neither hold, then X is marked as disappeared (lines 15–16).

The case of cluster split detection involves building a list
of split candidate clusters (line 11). As specified in Table 1,
these clusters, when taken together, must form a match for
cluster X. The operation of “taking the clusters together”
(line 12) currently refers to the set union of the records,
i.e. weights are not considered for the moment. However,
weights are still considered in the overlap test performed at
line 18. If this test succeeds, cluster X is marked as split
(line 20), otherwise it is marked as disappeared (line 22).

The cases of absorption and survival are initially treated
together: ζi clusters and their survival candidates are added
to a list of absorptions and survivals (line 24). When all ζi

clusters are processed, this list is completed (line 26). Then,
for each ζj cluster Y , the detector extracts from this list all
ζi clusters for which Y is a survival candidate (line 28). If
this sublist contains more than one clusters, then these have
been absorbed by Y : They are marked as such (lines 30–31)
and removed from the original list (line 32). Otherwise, the
single member of the sublist is a cluster X that has survived

1 FOR X ∈ ζ i
2 splitCandidates = splitUnion = ∅;
3 survivalCandidate = NULL;
4 FOR Y ∈ ζ j
5 Mcell = overlap(X,Y);
6 IF Mcell ≥ τ THEN
7 IF g(X,Y) > g(X,survivalCandidate)
8 survivalCandidate = Y;
9 ENDIF
10 ELSEIF Mcell ≥ τ split THEN
11 splitCandidates += Y;
12 splitUnion = splitUnion ∪ Y ;
13 ENDIF
14 ENDFOR
15 IF survivalCandidate == NULL OR splitCandidates == ∅
16 THEN deadList += X; // X → ⊙
17 ELSEIF splitCandidates 6= ∅ THEN
18 IF overlap(X,splitUnion) ≥ τ THEN
19 FOR Y ∈ splitCandidates
20 splitList += (X,Y);

21 ENDFOR // X
⊂
→ splitCandidates

22 ELSE deadList += X; // X → ⊙
23 ENDIF
24 ELSE Absorptions˙Survivals += (X,survivalCandidate);
25 ENDIF
26 ENDFOR
27 FOR Y ∈ ζ j
28 absorptionCandidates = makeList(Absorptions˙Survivals,Y);
29 IF cardinality(absorptionCandidates) > 1 THEN
30 FOR X ∈ absorptionCandidates

31 absorbtionList += (X,Y); // X
⊂
→ Y

32 Absorptions˙Survivals -= (X,Y);
33 ENDFOR
34 ELSEIF absorptionCandidates == X THEN
35 survivalList += (X,Y); // X → Y
36 Absorptions˙Survivals -= (X,Y);
37 ENDIF
38 ENDFOR

Figure 2: Detector of external transitions

as Y (line 35). Again, the original list is updated (line 36).
Several improvements of this base algorithm are possible.

First, instead of computing the overlap for each pair of clus-
ters (line 5), MONIC computes the contingency matrix M of
the overlap values and retrieves the appropriate cell Mcell,
whenever the overlap of two clusters is needed. Furthermore,
split detections (lines 12, 18) can be performed more effec-
tively, if one observes that two clusters in ζj cannot have
common members. Then, the split test can be computed
from the individual intersection values in M because:X

a∈X∩(∪
p
u=1

Yu)

age(a, tj) =

pX
u=1

X
a∈X∩Yu

age(a, tj)

Thus, the complexity of the detector is O(K2) for K =
max{|ζi|, |ζj |}, once the contingency matrix M is computed.

4.2 Detection of Internal Transitions
Survived clusters may undergo internal changes, e.g. shrink

or expand. In Table 2, we have grouped the internal tran-
sitions as changes in size, compactness and location. The
transitions inside a group are mutually exclusive, but tran-
sitions of different groups can be combined. For example, a



Transition Notation Indicator

the cluster survives X → Y Y = matchτ (X, ζj) AND 6 ∃Z ∈ ζi \ {X} : Y = matchτ (Z, ζj)

the cluster is split into mul-
tiple clusters

X
⊂
→ {Y1, . . . , Yp} (∀u = 1 . . . p : overlap(X,Yu) ≥ τsplit)∧ overlap(X,∩p

u=1Yu) ≥ τ ∧
( 6 ∃Y ∈ ζj \ {Y1 . . . , Yp} : overlap(X,Y ) ≥ τsplit)

the cluster is absorbed X
⊂
→ Y Y = matchτ (X, ζj) AND ∃Z ∈ ζi \ {X} : Y = matchτ (Z, ζj)

the cluster disappears X → ⊙ none of the above cases holds for X

a new cluster has emerged ⊙ → Y

Table 1: External transitions of a cluster

Transition type Subtype Notation Indicators

1. Size transition 1a. the cluster shrinks X ց Y
P

x∈X
age(x, ti) >

P
y∈Y

age(y, tj) + ε

1b. the cluster expands X ր Y
P

y∈Y
age(y, tj) >

P
x∈X

age(x, ti) + ε

2. Compactness transition 2a. the cluster becomes more compact X
•
→ Y σ(Y ) < σ(X) − δ

2b. the cluster becomes more diffuse X
⋆
→ Y σ(Y ) > σ(X) + δ

3. Location transition Shift of center (I1) or X · · · → Y I1. |µ(X) − µ(Y )| > τ1 //mean

distribution (I2) I2. |γ(X) − γ(Y )| > τ2 //skewness

No change X ↔ Y

Table 2: Internal transitions of a cluster

cluster X ∈ ζi matched by Y ∈ ζj can become larger and
more compact.

The two indicators for the detection of size transitions
compare the datasets of X and Y , rather than comput-
ing their intersection. The weights of the individual cluster
members are thereby taken into account. However, while the
weights used to compute the cluster overlap are those com-
puted for timepoint tj , the size transition indicators consider
the weights of the members of X at the original timepoint
ti. This is reasonable, because the size transition should
consider the importance of the individual cluster members
at ti vs. tj .

The compactness transitions cannot be traced by observ-
ing the data records directly, so we resort to studying deriva-
tive values over the data distribution. The indicator that
appears in Table 2 is the standard deviation: If the stan-
dard deviation has decreased by more than some small value
δ, then the cluster has become more compact; if it has in-
creased by more than δ, the cluster has become more diffuse.
The threshold δ is intended to prevent insignificant changes
to be taken as compactness transitions. Other aggregate val-
ues over the distribution can be used instead of the standard
deviation, e.g. kurtosis (Eq. 1).

kurtosis(X) =

1
card(X)

P
x∈X

(x − µ(X))4�
1

card(X)

P
x∈X

(x − µ(X))2
�2 − 3, (1)

Also, a significance test can be used instead of the threshold
δ.

In the special case of a static metric space, the transi-
tions in Table 2 can be detected by studying the topological
properties of the cluster. In the metric space, a cluster can
also “shift” inside the trajectory. In the absence of a met-
ric space, it is still possible to detect location transitions as
shifts in the distribution: Indicator I1 detects shifts of the
mean (within half a standard deviation, cf. Def. 4), while I2
traces changes in the skewness γ():

γ(X) =

1
card(X)

P
x∈X(x − µ(X))3�

1
card(X)

P
x∈X

(x − µ(X))2
� 3

2

(2)

This latter indicator becomes interesting for clusters where
the mean has not changed but the distribution exhibits a
longer or shorter tail on either side of it.

4.3 Lifetime of Clusters and Clusterings
Cluster transition detection delivers insights on both the

evolution of individual clusters and on the overall confor-
mance of a clustering with the underlying population. In-
tuitively, if most clusters in a clustering survive from one
period to the next, then the population is rather stationary
and the clustering describes it well. If cluster transitions are
frequent though, this signals that the population is volatile
and that the clustering does not describe it well.

Accordingly, we model (a) the lifetime of a cluster and
(b) the lifetime of a clustering and use the corresponding
functions as basis for our experiments in the next section.
Those values give clues about the stability of the clusters
and the clusterings on the evolving data stream.

Definition 5 (Lifetime of a cluster). Let C be a
cluster and ti be the first timepoint where it emerged (as
part of clustering ζi). The lifetime of C is the number of
timepoints, in which cluster C has survived. We distinguish
among (i) “ strict lifetime”, lifetimeS, defined as the num-
ber of consecutive survivals without internal transition, (ii)
“ lifetime under internal transitions”, lifetimeI, for which
survivals with internal transitions are also considered and
(iii) “ lifetime with absorptions”, lifetimeA, that excepts for
the survivals also considers the absorptions of C.

By this definition, the lifetime of a cluster is at least 1,
referring to the clustering where it first appeared. We com-
pute cluster lifetime in a backward fashion: We start with
ζn and set the lifetime of its clusters to 1. At an earlier
timepoint ti, the strict lifetime of cluster X is 1 if X did not
survive in ti+1. If there is a Y ∈ ζi+1 with X ↔ Y , then
lifetimeS(X) = lifetimeS(Y ) + 1. If there is a Y ∈ ζi+1

with X → Y , then the lifetime of X under internal tran-
sitions is lifetimeI(X) = lifetimeI(Y ) + 1. If there is a

Y ∈ ζi+1 with either X → Y or X
⊂
→ Y , then the lifetime of

X with absorptions is lifetimeA(X) = lifetimeA(Y ) + 1.



The counterpart of cluster lifetime for clusterings is an
aggregate over the lifetimes of all clusters in the same clus-
tering.

Definition 6 (Clustering Lifetime). Let ζ be a clus-
tering. Its lifetime L(ζ) is the median of the lifetime with
absorption values among the clusters in it:

L(ζ) = medianC∈ζ{lifetimeA(C)}

In this definition, we use the weakest definition of cluster
lifetime, allowing for internal transitions and absorptions.
To prevent the dominance of a few short-lived or a few long-
lived clusters, we use the median lifetime instead of the av-
erage.

The clustering lifetime is a long-term property. However,
in most cases, clusterings are short-lived, even if some of
their clusters survive over several timepoints. We define
therefore a short-term version of clustering lifetime, based on
the ratio of clusters in it that survived or became absorbed
in the next timepoint:

Definition 7 (Passforward Ratio). Let ζi be the clus-
tering at timepoint ti for i = 1, . . . , n−1. The survival ratio
is the portion of clusters in ζi that survived (possibly with in-
ternal transitions) in ζi+1:

survivalRatio(ζi) =
|{X ∈ ζi|∃Y ∈ ζi+1 : X → Y }|

|ζi|
(3)

where we use the notation |A| for the cardinality of set A.
The absorption ratio of ζi is the portion of its clusters

that became absorbed by clusters of ζi+1:

absorptionRatio(ζi) =
|{X ∈ ζi|∃Y ∈ ζi+1 : X

⊂
→ Y }|

|ζi|
(4)

The passforward ratio of ζi is the portion of its clusters that
survived or became absorbed by clusters of ζi+1, i.e. the sum
of the survival ratio and the absorption ratio.

The passforward ratio indicates the extent to which a clus-
tering describes the accummulated data of the next time-
point. If the passforward ratio is low, then the clustering
lifetime is also low, although some clusters in it may have
survived for several further timepoints.

5. EXPERIMENTS
We have applied MONIC on a synthetic, automatically

generated dataset and on a real document collection – the
ACM library section H2.8 on “database applications” from
1997 until 2004. We used the synthetic data to show the
operation modus of MONIC . The goal of our experiments
with the real data was the acquisition of insight on cluster
evolution, as well as the study of the different parameters’
impact on the transition discovery process.

5.1 MONIC on Synthetic Data
We used a synthetic data generator which takes as in-

put the number M of data points to generate, the number
K of clusters to create, as well as the mean and standard
deviation of the anticipated members of each cluster. The
records were generated around the mean and subject to the
standard deviation, following a Gaussian distribution.

5.1.1 Dataset Generation
We generated datasets in a 100x100 workspace with a

fixed standard deviation of 5, using the following scenario:
At timepoint t1, we generated a dataset d1 around the cen-
ters (20,20), (20, 80), (80, 20), (80, 80), (50, 50), i.e. K1 = 5.
Each of the first four groups contained 20 data points, the
last one contained 30. The dataset d2 generated at t2 con-
tains 40 additional data points equally distributed among
the four corner groups. At timepoint t3, we added two
groups of 30 data points around the centers (50, 40) and
(50, 60), building d3. At each of the subsequent time-
points t4, t5, t6, we added 30 datapoints around the cen-
ters t4 :(20,50), t5 :(20,30) and t6 :(20,40), producing the
datasets d4, d5, d6.

To deal with data ageing, we used a sliding window of
size ws = 2. This means that for each timepoint ti, the
time dependent function f() assigned the weight 1 to all
records of the datasets di−1 and di−2 and the weight 0 to all
records of the datasets dl, l < i − 2. Thus, we derived the
datasets D1, . . . , D6 used hereafter. The first four datasets
(timepoints t1 . . . t4) are depicted in Fig. 1.

5.1.2 Cluster Transitions
We used Expectation-Maximization (EM) [17] for clus-

tering. We applied EM on the datasets D1, . . . , D6, setting
τ ≡ τmatch = 0.5 and τsplit = 0.1. The size transition
threshold ε is set to 0.003, the threshold on compactness δ
is 0.2 and the location transition threshold τ1 (for shifts of
the mean) is 0.2. The clusterings ζi, i = 1 . . . 6 are depicted
in Fig. 3, while the transitions found are shown in Table 3.
It must be noted that new clusters have appeared at time-
points t4 and t5: These events are not transitions, but the
new clusters are monitored from the next timepoint on.

t2 C11 · · ·
⋆
→ր C21 C12 · · ·

•
→ր C22 C13 · · ·

⋆
→ր C23

C14 · · ·
•
→ր C24 C15 ↔ C25

t3 C21 ↔ C31 C22 ↔ C32 C23 ↔ C33

C24 ↔ C34 C25
⋆
→ր C35

t4 C31 → ⊙ C32 → ⊙ C33 → ⊙

C34 → ⊙ C35
⊂
→ {C45, C46}

t5 C41 → ⊙ C42 → ⊙ C43 → ⊙
C44 → ⊙

C45 ↔ C53 C46 ↔ C54 C47 · · ·
⋆
→→ C52

t6 C51
⊂
→ C61 C52

⊂
→ C61

Table 3: Cluster transitions on the synthetic data

In Table 3, we can see external and internal transitions of
clusters, using the notation of Table 1, respectively Table 2.
By juxtaposing the clusters in the Table with the visual-
ization in Fig. 3, we can see that MONIC has mapped the
old clusters to the new ones, identifying survivals with or
without internal transitions, absorptions and splits. Some
clusters have experienced multiple internal transitions, e.g.
C12 has expanded and shifted into C22, which furthermore,
is more compact than its predecessor.

5.2 MONIC on Section H.2.8 of the ACM dig-
ital library

We have applied MONIC to thematic clusters discovered
on the section H2.8 of the ACM digital library and studied
the clusters’ lifetime and the ratios of survival etc for the
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Figure 3: Clusters at timepoints t1, t2, t3 (up) and t4, t5, t6 (down)

clusterings at the different timepoints.

5.2.1 Section H2.8 of the ACM digital library
ACM library section H2.8 “Database applications” con-

tains publications on (1) data mining, (2) spatial databases,
(3) image databases, (4) statistical databases, (5) scien-
tific databases – categorized in the corresponding classes.
It further contains (6) uncategorized documents, i.e. those
assigned in the parent class “database applications” only,
as well as those documents from other parts of the ACM
library, which have one of the subarchive’s classes as sec-
ondary class. In the latter case, the documents are treated
identically to those have one of the first five classes as pri-
mary class.

We have considered those documents from 1997 to 2004
that have a primary or a secondary class in H2.8, i.e. one
of the six classes above. For each document, we have con-
sidered the title and the list of keywords; we omitted the
abstracts because (a) they are only available for late peri-
ods and (b) the keywords themselves should be adequate for
class separation.

Before proceeding with the experiments, some remarks on
the H.2.8 collection are due. This collection is unbalanced
with respect to the six classes; the class “Data Mining” is
larger than all the others together. Many clustering algo-
rithms have difficulties with such data distributions. More-
over, this class grows faster than the others, while some of
the smallest classes stagnate.

We have designed several alternative feature spaces, rang-
ing from the whole set of words to a small list of frequent
words. We have also considered alternative weighting schemes,
including the embedded mechanism of CLUTO 2 and the
entropy-based feature weighting function proposed in [6].
Best results were acquired for a feature space consisting of
the 30 most frequent words with TFxIDF term weighting
and for the method of [6]. We have opted for the former,
computationally simpler approach.

For clustering, we have experimented with Expectation–
Maximization [17], with a hierarchical clusterer using single

2http://glaros.dtc.umn.edu/gkhome/views/cluto/

linkage, with CLUTO and with bisecting K-means. Best re-
sults were obtained with bisecting K-means for K=10 (rather
than 6), so our experiments were performed with this set-
ting.

Document import, vectorization and clustering was done
with the DIAsDEM Workbench open source text mining
software 3. To deal with data ageing, we applied a sliding
window of size 2, i.e. documents older than two time peri-
ods acquired zero weight. The cluster transitions found by
MONIC are presented in the next subsubsection.

5.2.2 Cluster transitions and impact of thresholds
We have first varied the threshold τmatch from 0.45 (rather

than 0.50) to 0.7 in steps of 0.05 and depicted the number
of clusters that experienced internal or external transitions.
For values of τmatch larger than 0.7, there were hardly cluster
survivals, so we omit these values. For cluster splitting, we
have set τsplit = 0.1. The results are illustrated in Fig. 4.

In Fig. 4(a) we can see that the number of surviving clus-
ters drops as τmatch becomes more restrictive. The number
of splits and disappearing clusters in Fig. 4(b), respectively
(c) increases accordingly. At the same time, all surviving
clusters experience changes in size. Furthermore, we have
not detected any absorption transitions. Hence, the passfor-
ward ratio is equal to the survival ratio for all clusterings.

A comparison of the numbers for each timepoint, Fig. 4(a),
(b), (c), reveals that the clusters in early clusterings tend to
disappear and be replaced by new ones (more disappear-
ances than splits), while the trend reverses in late cluster-
ings: The clusters in recent timepoints are rather split than
scattered. This might be explained by the increasing vol-
ume of the document collection: The number of documents
inserted at each timepoint increases rapidly at the late time-
points, so that unstable clusters may be split by the clusterer
in large chunks instead of being dissolved and rebuilt.

To check this hypothesis, we analyzed the influence of
the threshold τsplit upon the number of splits and disap-
pearances, as shown in Fig. 5. We have varied τsplit from

3Registered in SourceForge under
http://sourceforge.net/projects/hypknowsys



0.1 to 0.35 with a step of 0.05, setting τmatch = 0.5. As
expected, large values of τsplit result in a higher number of
disappearing clusters. However, the numbers of splits at late
timepoints indicate that splits are only possible if the value
of τsplit is small. Hence, the clusters are not split into large
chunks, they are indeed dissolved and rebuilt. For exam-
ple, the dominant class “Data Mining” grows substantially
in the recent timepoints but is not homogeneous enough to
produce clusters with a long lifetime.
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Figure 4: Cluster transitions for different values of
τmatch: (a) Survived clusters, (b) split clusters and
(c) disappeared clusters

5.2.3 Lifetime of clusters and clusterings
Next we studied the persistence of the clusterings over

time. We first computed the passforward ratios (cf. Def. 7).
The results are listed in Table 4. We show the absolute
number of clusters for simplicity; since K = 10, the rela-
tive numbers are trivial to compute. It is apparent from
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Figure 5: Cluster transitions for different values of
τsplit: (a) Split clusters and (b) disappeared clusters

this Table that the clusterings at some timepoints show a
high, respectively low, passforward ratio, independently of
the τmatch values: The low passforward ratio at timepoint
2002 indicates a drastic change in the documents between
2001 and 2002 (window size = 2), that has been preceded by
a rather stable period of two years; the clusterings of 2000
and 2001 have quite high passforward ratios.

τmatch 1999 2000 2001 2002 2003 2004
0.45 4 7 7 1 5 4
0.50 4 5 7 1 3 4
0.55 3 3 3 0 2 3
0.60 3 2 3 0 1 1
0.65 3 0 1 0 0 1
0.70 2 0 1 0 0 0

Table 4: Passforward ratios for different values of
the τmatch threshold

The rather low passforward ratio of the clusterings is re-
flected in the lifetimes of the individual clusters. We have
studied cluster lifetime according to Def. 5. To this pur-
pose, we have set τmatch = 0.5 and τsplit = 0.1 and have
computed the lifetime with internal transitions for the clus-
ters, lifetimeI (cf. Def. 5): Since all survived clusters expe-
rience internal transitions, the strict lifetime is 1 for all of
them. Since no absorptions have occurred, the lifetime with
absorptions is equal to lifetimeI for all clusters. The find-
ings are presented in Table 5. The second column shows the
lifetimes of all clusters in each clustering.

The third column in Table 5 is the lifetime of the cluster-



Timepoint Lifetimes of clusters Lifetime L

1998 {4,1,4,1,4,1,2,1,1,1} 1
1999 {4,1,4,1,1,4,1,2,1,3} 1
2000 {4,1,4,1,3,2,4,3,2,1} 2
2001 {4,1,4,2,4,2,3,2,1,1} 2
2002 {1,1,3,1,1,1,1,1,1,1} 1
2003 {3,1,1,1,1,1,1,2,3,1} 1
2004 {3,3,1,2,1,1,2,1,1,1} 1

Table 5: Lifetime of clusterings

ings according to Def. 6. It is obvious that all timepoints
are characterized by short-lived clusterings, although some
of them contain rather stable individual clusters.

5.2.4 Clusters vs Classes of the ACM Library
Thus far, we have studied evolution of the clusters in H.2.8

without considering the real ACM classes. To this purpose,
we juxtapose the transitions and cluster lifetimes found by
MONIC to the “real”, observable evolution of H.2.8. To do
so, we have labeled each cluster with its two most frequent
words and mapped these labels/“topics” to the ACM classes;
details can be found in [16]. For cluster transition detection,
we have set τ = 0.5 and τsplit = 0.1 and concentrated on
splits, disappearances and cluster lifetime with internal tran-
sitions (lifetimeI), since there were no strict survivals and no
absorptions. On this basis, we have checked whether cluster
transitions correspond to comprehensible topic evolutions.
The findings are as follows:

• There is always one cluster without a label, hereafter
denoted as “cluster 0”. The clusterer places in this
cluster all records that cannot be accommodated else-
where. By nature, this uninformative cluster has a
high lifetime of 4 timepoints. However, it does not
survive the population shift at timepoint 2002; at this
timepoint it is dissolved and rebuilt.

• Each clustering contains two or three clusters on data
mining, the dominant class. In the first 4 timepoints,
we find a growing cluster on “association rules”. In
2002, it is split into a smaller cluster with the same
label and an unlabeled noisy cluster (other than cluster
0):

C19984
ր C19999

ր C20006
ր C20014

⊂
→ {C20027

, C20029
}

where denote as Cyw the identifier of the “association
rules” cluster in year y, w = 1 . . . 9 4.
The small cluster C20027

disappears in 2003 (C20027
→

⊙). One of the emerging clusters of 2004 (⊙ → C20043
)

has again the label “association rules”.

• The other clusters on data mining have less specific la-
bels, such as “knowledge discovery” or “data mining”.
Their lifetime does not exceed 3 timepoints, during
which they experience splits and size transitions.

• At the early timepoints, there are clusters labeled “spa-
tial” and “image” (later: “image retrieval”). The la-
bels appear in several periods but are associated with

4Cluster identifiers are generated by the clustering algo-
rithm at each timepoint. They do not indicate transitions.

different clusters, so the cluster lifetime is low. Clus-
ters associated to classes other than “Data Mining”
appear only until 2002.

• The number of clusters with a label is large in the
clusterings of the early timepoints and decreases in
the clusterings of the late timepoints. The labels of
the late timepoints are shorter and less informative
(“model”, “data”). Clusters that can be associated to
classes other than “Data Mining” appear only at the
early timepoints.

Hence, MONIC detected a remarkable shift in the accu-
mulating H2.8 section between 2001 and 2002, signaled by
an increased number of cluster splits and disappearances.
The history of H.2.8 contains at least one event that may
explain this shift: Starting with KDD’2001, the proceedings
of the conference and of some adjoint workshops are being
uploaded in the ACM Digital Library, enriching the H.2.8
section with a lot of documents on many subtopics of data
mining.

The results are indicative of the types of transitions that
may be caused by a population shift in an unlabeled dataset
and of the potential of detecting and understanding shifts
through the monitoring of cluster transitions.

6. CONCLUSION AND OUTLOOK
We have presented the MONIC framework for the mon-

itoring of cluster transitions. Differently from spatiotem-
poral clustering methods, MONIC is designed for arbitrary
types of clusters and takes account of issues peculiar to pat-
tern analysis over accumulating data, such as the need for
a sliding window or a data weighting scheme for past data.
MONIC encompasses a cluster transition model and a tran-
sition detection algorithm, operating upon clusterings over
an accummulating dataset. We have applied MONIC on
a section of the ACM library and have shown how cluster
transitions give insights to changes of the data population.
Currently, we work on heuristic enhancements of the transi-
tion detection algorithm to reduce the matrix computation
overhead at each timepoint. This includes the use of sum-
mary data, as discussed below.

MONIC is very general with respect to transition types
and clustering algorithms. However, it operates on raw data.
Data records are not always available for cluster monitoring,
though, e.g. because of the storage demand or due to pri-
vacy considerations. In such cases, only summary data are
available. MONIC does use summary data to detect internal
transitions. In future work, we intend to use summary data
for the detection of external transitions, as well as to elabo-
rate on the tradeoff between performance gain and informa-
tion loss (data weighting cannot be transferred trivially on
summary data, splits and absorptions cannot be traced at
all). Finally, we plan to use MONIC to test the stability of
clusters and clusterings over time, as opposed to traditional
tests for stationary data.
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