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Abstract. Clustering algorithms detect groups of similar population
members, like customers, news or genes. In many clustering applications
the observed population evolves and changes, subject to internal and
external factors. Detecting and understanding change is important for
decision support. We extend our earlier framework MONIC for generic
cluster transition modeling and detection, into MONIC+ for cluster-type
specific transition detection. MONIC+ encompasses a typification of clus-
ters and cluster-type-specific transition indicators, by exploiting cluster
topology and cluster statistics for transition detection.

1 Introduction

For many clustering applications, clusters should not be observed as static ob-
jects, since the underlying datasets undergo changes over time, e.g. customers
and their buying preferences, scientific publications and their topics or viruses
and their resistance to medicaments. Research on spatiotemporal clustering, in-
cremental clustering and stream clustering addresses the problem by adapting
clusters to changing datasets. However, the tracing and understanding of the
changes themselves is of no less importance for effective decision support.

In our previous work [10], we proposed the MONIC framework for cluster
transition detection. MONIC is independent of the clustering algorithm since
it relies on the contents of the underlying data stream. However, due to its
generality, MONIC does not exploit the particular features of the different cluster
types for transition detection. We extend here MONIC into MONIC+ that covers
the special characteristics associated with different cluster types, thus allowing
us to capture cluster-type-specific transitions.

After discussing related work in Section 2, we introduce in Section 3 a typi-
fication of clusters and then specify the notion of match for clusters derived at
different timepoints over an accumulating data stream. Section 4 contains our
cluster transition monitoring method and heuristics for different cluster types.
In Section 5 we present our first experiments. Section 6 concludes our study.

2 Related Work

Research relevant to our work can be categorized into methods for cluster change
detection and methods for spatiotemporal clustering. Among the former, the FO-



CUS framework [6] compares two datasets and computes their deviation based
on the data mining models they induce. Clusters are a special case of models
represented as non-overlapping regions that are described through a set of at-
tributes and correspond to a set of raw data. However, the emphasis in this work
is on comparing datasets, not in understanding how a cluster has evolved inside a
new clustering. The PANDA framework [4] proposes methods for the comparison
of simple patterns and aggregation logics for the comparison of complex ones.
PANDA concentrates on the generic and efficient realization of pattern compar-
ison, rather than on the detection and interpretation of cluster transitions. In [1]
clusters are modeled as kernel functions and changes as kernel density changes
at each spatial location; different types of change are considered, with emphasis
in computing change velocity. In [13], formation and dissipation events are de-
tected upon clusters of spatial scientific data. Both approaches operate upon a
specific attribute space, the 2D spatial space; they observe a cluster as a densi-
fication in the time-invariant feature space and monitor changes upon it. Hence,
these methods cannot be coupled with arbitrary clustering algorithms, e.g. hier-
archical algorithms, density based algorithms or even clustering algorithm over
dynamic attribute spaces. Moreover, these methods juxtapose each cluster to
the feature space and cannot trace interferences among clusters, e.g. one clus-
ter absorbing the other. In [9] a special type of change is proposed, the moving
cluster, which traces common data records between clusters of consecutive time-
points. Our work, however, is more general since it encompasses several cluster
transition types.

3 A Model for Clusters over Dynamic Data

We assume that data are clustered at timepoints t1, . . . , tn. Clustering ζi, derived
at timepoint ti, corresponds to a partitioning of the dataset Di seen thus far.
As is typical in data streams, we allow for the decay of old records: We use an
ageing function age(x, ti) ∈ [0, 1] that assigns a weight to each record x seen
at ti or earlier, so as the most recent records are assigned higher weights. The
simplest form of this function is a sliding window.

Our goal is to trace/monitor a cluster found at some timepoint among the
clusters of the next timepoint. Since this depends on the notion of cluster itself,
we first introduce a typification of clusters, which we use next to derive type-
specific concepts for the comparison of clusters across the time axis.

3.1 Typification of Cluster Definitions

Clustering algorithms use a variety of cluster definitions [8]. We propose the
following typification that facilitates the study of clusters as changing objects :
[Type A] Clusters are discovered upon a dataset-independent metric space. A
cluster is a geometric object, e.g. a sphere like in K-means. Cluster changes are
observed over the static metric space as geometric transformations.



[Type B1] There is no metric space or it depends on the contents of the dataset
at each timepoint. A cluster is defined extensionally as a set of data records.
Hierarchical algorithms which build dendrograms and express clusters as sets of
proximal data points belong to this type. These algorithms use a metric space
to derive a clustering on a dataset, but this space is data-dependent, in the sense
that the addition of a new record might change the border of a cluster, even if
this record does not belong to the cluster at all.
[Type B2] A cluster is defined intensionally as a distribution. For a cluster X of
type B2, we denote its cardinality as card(X), its mean as µ(X) and its standard
deviation as σ(X). The Expectation-Maximization (EM) algorithm belongs to
this category. Several combinations of the base types are possible, e.g. when both
the dataset and its statistics are used (types B1+B2).

3.2 Cluster Matching

A cluster transition is a change effected upon a cluster X ∈ ζi discovered at
ti, when we observe it at the next timepoint tj. The first step in detecting a
transition is the tracing of X in the clustering ζj of tj – if it still exists. We
define the notion of overlap and of (best) match for a cluster, before we proceed
with a categorization of cluster transitions.

Definition 1 (Cluster overlap). Let ζi be the clustering discovered at time-
point ti and ζj the one discovered at tj , j �= i. We define a function overlap()
that computes the similarity or overlap of a cluster X ∈ ζi towards a cluster
Y ∈ ζj as a value in [0, 1] such that (i) the value 1 indicates maximum overlap,
while 0 stands for no overlap and (ii) it holds that

∑
Y ∈ζj

overlap(X, Y ) ≤ 1.

Cluster overlap is defined asymmetrically. After this generic definition of the
overlap function, we specify overlap() for each cluster type.

Definition 2 (Overlap for Type A Clusters). Let ζi, ζj be two clusterings
of Type A clusters, derived at ti < tj respectively. For two clusters X ∈ ζi and
Y ∈ ζj, the overlap of X to Y is the normalized intersection of their areas:

overlap(X, Y ) =
area(X) ∩ area(Y )

area(X)

Definition 3 (Overlap for Type B1 Clusters). Let ζi, ζj be two clusterings
of Type B1 clusters, derived at ti < tj respectively. For two clusters X ∈ ζi and
Y ∈ ζj , the overlap of X to Y equals to the normalized sum of the weights of
their common data points:

overlap(X, Y ) =
∑

a∈X∩Y age(a, tj)∑
x∈X age(x, tj)

Definition 4 (Overlap for Type B2 Clusters). Let ζi, ζj be two clusterings
of Type B2 clusters, derived at ti < tj respectively. For two clusters X ∈ ζi and



Y ∈ ζj, the overlap of X to Y is defined in terms of the proximity of their means:

overlap(X, Y ) =

{
1 − |µ(X)−µ(Y )|

σ(X) , |µ(X) − µ(Y )| ≤ σ(X)
0 , otherwise

Definition 5 (Cluster match). Let X ∈ ζi, Y ∈ ζj be two clusters derived
at ti < tj respectively. Further, let τ ≡ τmatch ∈ (0.5, 1] be a threshold value. Y
is “a match for X in ζj subject to τ”, i.e. Y = matchτ (X, ζj), iff: (i) Y has
the maximum overlap to X among all the clusters in ζj, i.e. overlap(X, Y ) =
maxY ′∈ζj{overlap(X, Y ′)} and (ii) overlap(X, Y ) ≥ τ . If no such cluster exists
for X in ζj , then matchτ (X, ζj) = ∅.

4 Cluster Transitions in MONIC+

For MONIC+ , a cluster transition is a change experienced by a cluster that was
discovered at the previous timepoint. We use the transition model of MONIC
[10]: According to this model, a transition might concern the content and the
form of the cluster (internal transition) or rather its relationship to the whole
clustering (external transition).

The external transitions of cluster X ∈ ζi with respect to clustering ζj dis-
covered at the next timepoint tj are as follows:
- Survival: X survives into Y ∈ ζj , if (a) there is a match Y for it in ζj and (b)
this match does not contain any further cluster of ζi: X → Y
- Absorption: X is absorbed by cluster Y ∈ ζj , if the match Y of X is also
match for some other cluster X ′ of ζi: X

⊂→ Y
- Split: X is split into clusters Y1, . . . , Yp ∈ ζj , if each of these clusters overlaps
with X for no less than τsplit and, when taken together3, they form a match for
X : X

⊂→ {Y1, . . . , Yp}
- Dissapearance: X has disappeared, if none of the above cases holds: X → 	
The external transitions refer to existing clusters. Emerging clusters in ζj can
be easily detected as those that are not the result of some external transition.

If a cluster survives, internal transitions may occur. We categorize internal
transitions into changes in size, compactness and location.
- Size transition: (a) Cluster shrinks into a smaller cluster: X ↘ Y or (b)
expands into a larger cluster: X ↗ Y
- Compactness transition: (a) Cluster becomes more compact: X

•→ Y or
(b) less compact (more diffuse): X

�→ Y
- Location transition: cluster shifts: X · · · → Y
- No change: X ↔ Y

4.1 Type-Dependent Detection of Transitions

The detection of external transitions in MONIC+ is as in MONIC [10], but
some steps must be implemented differently depending on the cluster type. Due
3 We show later how the “taking all clusters together” is realized for each cluster type.



to space limitations, more details about the transition detection algorithm can
be found in the long version of this paper [11].

The observable transitions for each cluster type are depicted in Table 1. All
external and internal transitions can be detected for clusters in a metric space
(Type A). For clusters defined extensionally (Type B1), compactness and loca-
tion transitions cannot be observed directly, because concepts like proximity and
movement are not defined. However, when one derives the intensional definition
of a cluster, both transitions become observable as changes in the cluster density
function; we refer to this as Type B1+B2. Conversely, the intensional definition
of a cluster (Type B2) does not allow for the detection of splits and absorptions,
which in turn can be found by studying the cluster’s members (Type B1+B2).

Transition Indicators for Type A Clusters. Let ζi, ζj be the clusterings at
timepoints ti < tj and let X ∈ ζi be the cluster under observation. The transition
indicators proposed in Table 2 use the type-specific definition of cluster overlap
(Def. 2) and the derived definition of cluster match (Def. 5).

External cluster transitions are detected by computing the area overlap be-
tween cluster X and each candidate in ζj . To detect a split, we customize the
split test of the algorithm [11]. More specifically, we compute the overlap be-
tween the area of X and that of all split candidates. Since these candidates
cannot overlap, we use the following equation to perform the split test:
area(X) ∩ area(∪p

u=1Yu) =
∑p

u=1 area(X) ∩ area(Yu)
The detection of internal transitions translates into tracing the movements

of a cluster in a static metric space. In Table 3, we propose indicators for spher-
ical clusters, as produced by e.g. K-Means and K-Medoids. We can further use
indicators for Type B1 and B2 clusters (discussed next).

The first heuristic in Table 3 detects location transitions by checking whether
the distance between the centers exceeds a threshold τlocation; we normalize this
distance on the size of the smallest radius. The second heuristic states that a
cluster has become more compact if the average distance from the center was
larger in the old cluster than in the new one – subject to a small ε. The third
heuristic for clusters becoming less compact is the reverse of the second one.

Transition Indicators for Type B1 Clusters. Let X ∈ ζi be a cluster found
in ti. To trace its transitions in ζj , we consider the indicators proposed in Table 4
for the transitions that can be observed over Type B1 clusters (cf. Table 1).

Size transitions for a cluster X that has survived into Y are traced by com-
paring the datasets. While the weights used when computing cluster overlap are
those valid at timepoint tj , the size transition heuristics consider the weights of
the members of X at the original ti: The size transition heuristic should reflect
the importance of the individual cluster members at ti.

Transition Indicators for Type B2 Clusters. We consider again a cluster
X ∈ ζi. To detect size transitions, we used the heuristic for Type B1 clusters (cf.
Table 4). For the other obervable transitions (cf. Table 1), we use the indicators
in Table 5. The first one states that a cluster survives if there is a match for it,



subject to a τ ∈ (0.5, 1] (cf. Def. 5): The indicator demands that µ(X) and µ(Y )
are closer than half a standard deviation. Since clusters of the same clustering do
not overlap, we expect that no more than one cluster of ζj satisfies this condition.

An absorption transition for X ∈ ζi implies finding a Y ∈ ζj that contains
X, Z ∈ ζi. Similarly, a split transition corresponds to finding clusters that contain
subsets of X . However, this implies treating the clusters as datasets (Type B1).
So, we only consider survival and disappearance for B2-clusters.

To detect compactness transitions, we use the difference of the standard
deviations of the clusters X, Y . For location transitions, we use two heuristics
that reflect different types of cluster shift: h1 detects shifts of the mean (within
half a standard deviation, cf. Def. 5), while h2 traces changes in the skewness γ().
Heuristic h2 becomes interesting for clusters where the mean has not changed
but the distribution exhibits a longer or shorter tail.

5 Experiments

We have tested MONIC+ on a synthetic stream of data records, in which we have
imputed cluster transitions. We performed clustering with different algorithms,
but here we report on results for B1- and A-clusters.

We used a data generator that takes as input the number of data points
M , the number of clusters K, as well as the mean and standard deviation of
the anticipated members of each cluster. The records were generated around the
mean and subject to the standard deviation, following a Gaussian distribution.
We fixed the standard deviation to 5 and used a 100×100 workspace for two-
dimensional datapoint. The stream was built according to the scenario below.
- t1: Dataset d1 consists of points around the K1 = 5 centers (20,20), (20, 80),
(80, 20), (80, 80), (50, 50).
- t2: Dataset d2 consists of 40 datapoints, distributed equally across the four
corner-groups of d1 data.
- t3: d3 consists of 30 points around location (50,40) and 30 points around
(50,60).
- t4, . . .: At each of t4, t5, t6, we added 30 points around t4 :(20,50), t5 :(20,30)
and t6 :(20,40).

For data ageing, we used a sliding window of size ws = 2. Hence, at each
timepoint ti, i > 1, the dataset under observation was Di = di ∪ di−1.

We have built Type A clusters with K-Means [12]. For Type B2 clusters, we
have used Expectation-Maximization (EM) [12], which models clusters as Gaus-
sian distributions; we ignored the distribution information though and treated
the clusters as datasets. For K-means, we have defined K to be the optimal num-
ber of clusters found by EM. The clusterings found at t1, . . . , t6 with EM are
shown in Fig. 1. Those found with K-Means are in Fig. 2; they are different from
the EM clusters, thus implying also different cluster transitions.

Fig. 1 depicts the clusters at each timepoint but delivers little information
about the impact of new data and of data ageing. In Table 6(a), the changes in
the population are reflected in the discovered transitions. MONIC+ has correctly



mapped the old clusters to the new ones, identifying size transitions, survivals,
absorptions and splits. There are also new clusters found at t4 and t5.

For Type A clusters, we have used the indicators in Table 2, setting τ =
0.5 and τsplit = 0.2. For the size transition, we have used the B1 indicator in
Table 4 with ε = 0.003. For the other internal transitions, we have used the
indicators for spheres in Table 3 with τlocation = 0.1 (location transitions) and
ε = 0.001 (compactness transitions). The transitions found by MONIC+ and
shown in Table 6(b) reveal that most clusters are unstable, experiencing all
types of internal transitions, or they disappear, giving place to new (unstable)
clusters. Even in the absence of a visualization (which might be difficult for a
real dataset in a multi-dimensional feature space), these transitions indicate the
cluster instability and the need for closer inspection of the individual clusters.

6 Conclusion and Outlook

We have presented the framework MONIC+ for the monitoring of cluster tran-
sitions over accummulating data. MONIC+ is designed for arbitrary types of
clusters, thus making the process of transition detection independent of cluster
discovery. MONIC+ employs heuristics that exploit the particular characteris-
tics of different cluster types, such as topological properties for clusters over a
metric space (Type A) and descriptors of data distribution for clusters defined
as distributions (Type B2). Our first experiments show that the transition model
and the detection heuristics can reveal different forms of cluster evolution.

In future work, we intend to design and study dedicated heuristics for specific
types of clusters, like spherical ones. We also want to design a more formal
evaluation framework: Although there are datasets for the evaluation of stream
clustering algorithms, there is no gold standard for the evaluation of evolving
clusters upon the stream. Hence, we are considering methods for the generation
of appropriate synthetic datasets.

External Internal transitions
Cluster type Size Compact. Location

A. metric space Yes Yes Yes Yes
B1. extensional Yes Yes No No
B2. intensional survival Yes Yes Yes
B1+B2. Yes Yes Yes Yes

Table 1. Observable transitions for each cluster type
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Step Transition Indicator

1 Survival or Absorption ∃Y ∈ ζj : area(X)∩area(Y )
area(X)

≥ τ

2 X
⊂→ Y ∃Z ∈ ζi \ {X} : area(Z)∩area(Y )

area(Z)
≥ τ

3 X → Y � ∃Z ∈ ζi \ {X} : area(Z)∩area(Y )
area(Z)

≥ τ

4 Split ∃Y1, . . . , Yp ∈ ζi :

(∀Yu : area(X)∩area(Yu)
area(X)

≥ τsplit) ∧ area(X)∩area(∪p
u=1Yu)

area(X)
≥ τ

5 X → � derived from the above

For survived clusters: X → Y
Size B1 indicators & B2 indicators

Compactness geometry-dependent & B2 indicators

Location geometry-dependent & B2 indicators
Table 2. Indicators for Type A cluster transitions

Transition Indicator

X · · · → Y d(center(X),center(Y ))
min{radius(X),radius(Y )} ≥ τlocation

X
•→ Y avgx∈X(d(x, center(X)) > avgy∈Y (d(y, center(Y )) + ε

X
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Table 3. Indicators for spherical clusters
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Step Transition Indicator

1 Survival or
Absorption

∃Y ∈ ζj :

∑
a∈X∩Y

age(a,tj)∑
x∈X

age(x,tj)
≥ τ

2 X
⊂→ Y ∃Z ∈ ζi \ {X} :

∑
a∈Z∩Y

age(a,tj)∑
z∈Z

age(z,tj)
≥ τ

3 X → Y � ∃Z ∈ ζi \ {X} :

∑
a∈Z∩Y

age(a,tj)∑
z∈Z

age(z,tj)
≥ τ

4 Split ∃Y1, . . . , Yp ∈ ζi :

(∀Yu :

∑
a∈X∩Yu

age(a,tj)∑
x∈X

age(x,tj)
≥ τsplit) ∧

∑
a∈X∩(∪p

u=1Yu)
age(a,tj)∑

x∈X
age(x,tj)

≥ τ

5 X → � derived from the above

Size
6 X ↗ Y

∑
y∈Y

age(y, tj) >
∑

x∈X
age(x, ti) + ε

7 X ↘ Y
∑

x∈X
age(x, ti) >

∑
y∈Y

age(y, tj) + ε

Table 4. Indicators for Type B1 cluster transitions

Step Transition Indicator

1 X → Y ∃Y ∈ ζj : 1 − |µ(X)−µ(Y )|
σ(X)

≥ τ

2 X → � negation of the above

Size B1 indicators in Table 4

X · · · → Y h1. |µ(X) − µ(Y )| > τh1

h2. |γ(X) − γ(Y )| > τh2 (cf. Eq. ?? below)

X
•→ Y σ(Y ) < σ(X) + ε

X
�→ Y σ(X) < σ(Y ) + ε

Table 5. Indicators for Type B2 cluster transitions
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Fig. 1. Type B2 clusters at timepoints t1, t2, t3, t4 and t5, t6
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Fig. 2. Type A clusters at timepoints t1, t2, t3, t4 and t5, t6

Type B2 Type A

t2 C11 ↗ C21 C12 ↗ C22 C13 ↗ C23 C11 → � C12
⊂→ C23 C13

⊂→ C23

C14 ↗ C24 C15 → C25 C14 → � C15 · · · •→↗ C25

t3 C21 → C31 C22 → C32 C23 → C33 C21 → � C22 → � C23 → C32

C24 → C34 C25 ↗ C25 C24 → � C25 → �
t4 C31 → � C32 → � C33 → � C31 · · · •→↘ C46 C32

⊂→ {C43, C44} C33 → �
C34 → � C35

⊂→ {C45, C46} C34 → � C35 · · · �→↘ C45

t5 C41 → � C42 → � C43 → � C41 → � C42 · · · �→↗ C51 C43 → �
C44 → � C44 → � C45 · · · •→↘ C54

C45 → C53 C46 → C54 C47 → C52 C46
⊂→ {C52, C53} C47 → �

t6 C51
⊂→ C61 C52

⊂→ C61 C51
•→↗ C61 C52 → � C53 → � C54 → �

Table 6. Transitions for (a) Type B2 clusters – left and (b) Type A clusters – right


