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Problem Statement

Advanced LBS would involve moving object trajectories

2 Common queries: range and nearest-neighbor (what-is-around,
find-the-nearest etc. services)

KDD - extracting knowledge (e.g. classification & clustering
tasks) from trajectory databases

0 the notion of some kind of distance function
Formally:

Let D be a database of trajectories Tiand Q be a (reference) trajectory
consisting of a set of 3D Line Segments.

The Most-Similar-Trajectory (MST) S in D with respect to Q is the one that
minimizes a distance measure Dist(Q, T).
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Related Work

Most approaches inspired by the time series analysis domain
[AFS99], [KJF97], [CF99].

Other approaches deal with basic trajectory features [VGDO02],
[VGKO02], [VKGO02 |, [LS05], [CN04], [COO05]

2 different sampling rates, different speeds

2 possible outliers

a9 different scaling factors, different trajectory lengths, local time shift.

Common characteristic of previous works

9 interested in the movement shape of the trajectories, usually
considered as 2D time series.

2 measure the similarity by just considering the sequences of the
sampled positions.

2 temporal dimension is ighored, leaving the time recordings out of the
KDD process.
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Motivation

Real world: trajectories are represented by finite sequences of
time-referenced locations.

Such sequences may result from various approaches [AAP+07]

2 time-based (e.g. every 30 seconds),

2 change-based (e.g. when the location of an entity deviates from the
previous one by a given threshold),

2 location-based (e.g. when a moving object is close to a sensor),

2 event-based recording (e.g. when a user requests for localization)
derived parameters of motion are introduced

2 speed, acceleration, direction, etc.

A different perspective is required ...
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Contribution

" We introduce a framework consisting of powerful distance
operators

2 semantically different properties of trajectories, such as locality,
temporality, directionality, rate of change, are taken into consideration.

= (time-aware) spatiotemporal similarity. Find clusters of objects that follow
similar routes (i.e., projections of trajectories on 2D plane) during the same
time interval (e.g. co-location and co-existence from 3pm to 6 pm)

= (time-relaxed) spatial similarity. Find clusters of moving objects taking
only their route into consideration (i.e., irrespective of time, direction and
sampling rate).

and variations

" speed-pattern based spatial similarity. Find clusters of objects that follow
similar routes and, additionally, move with a similar speed pattern, and

= directional similarity. Find clusters of objects that follow a given direction
pattern (e.g. NE during the first half of the route and subsequently W).
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(Time-relaxed) Spatial Trajectory Fim
ime-r &:

Operator: Locality In-between Polylines distance (LIP)

LIP(Q S Z Area W _Lengl‘hQ(Ii,Il.H)-I-LengthS(Ii,IiH)

wherew,=
Y polygon Length ,+ Length g

Implicit output of LIP:
LIPgram = {LIPgram, ..., ...,

LIPgramnB§where
LIPgrami = (h, fi+1, LIP)
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Special cases for LIP

O X
LIP criterion: the segment implied between the ending points of
the currently investigated segments crosses none of the previous
segments of Q and S

Pelekis et al. Mining Trajectory Databases via a Suite of Distance Operators



GenlLIP algorithm

Algorithm GenLIP(Q polyline, S polyline, p int)

1 WHILE g < Q.LAST AND s < S.LAST

2 IF intersect(Qﬂ S_) THEN

3 Mark nyi as ‘good’ & add them to Q',S’
4. ELSIF NOT Bad(Q’, S', Qq, SS) THEN

5 Mark 0.5, as ‘good’ & add them to Q’, S’
6 ELSE

7 Qﬂ S, are marked as ‘bad’

8 FOR k=1 to p

9. Give p chances to repair LIP criterion
10. NEXT

11. IF repairing attempt succeeded THEN

12. GOTO line 1 with policy-dependant g, s
13. ELSE

14. Recover from attempt and GOTO line 17
15. END IF

16. NEXT

17. result = result + LIP(Q/, S’) O(MogN) time complexity
18. O =0 - 0O

19. S =5 -85

20— RETURN—resutt—+—GenLIP{Q,r—S,—0o)
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‘(Time-aware) Spatiotemporal

Trajectory Similarity

&

= Operator: Spatiotemporal LIP distance (STLIP)
STLIP(Q,S,k,6)= )  STLIP,
V polygon,
STLIP,=LIP -(1+k-TLIP,|, where k=0

-0 +6

S stretched to future

S stretched to past —_

S —

MDI (6)
TLIP.=|1-2 | <

Duration 0 + Duration ¢

QnS

Q a Spast

Q M Sfuture -

» TIME
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Speed-pattern based Similarit@y

" Operator: Speed-Pattern LIP distance (SPLIP).

SPSTLIP(Q,S ,k,1,6)= ). SPSTLIP,

V polygon,

SPSTLIP,= LIP,-| 1+ k-TLIP |-{1+1-SPLIP,

104, ~ LS, |

SPLIP.=
L Q Op.

l
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‘ (Time-relaxed) Directional %O?j

= Operator: Directional Distance (DDIST)

DDIST(Q,S)=)_ DDIST o

Vo.
0 i length(Qq).)-Flengl‘h(S(p.)
DDIST(piZE oW, WiT length(Q )+length(S)
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‘ (Time-aware) Directional
Simitar

= Operator: Temporal Directional distance (TDDIST)

>, DDIST (0., S, )
YO ! ’
TDDIST (Q,§)=—

)
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Experimental Study - Datasets‘ﬁ@EJ

" Real data - fleet of trucks (276) available in [The]
0 Manual extraction of 2 clusters (i.e. E2>N->W->S & N->E patterns)

= Synthetic datasets - generated by the GSTD data generator [TSN99]
2 Manual incorporation of Gausian noise
2 Manual increase of their sampling rate
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GenLIP Quality

= “Leave-One-Out” classification introduced by Keogh et al. [KKO02].
= Usage of the datasets having noise M, Si, Wi and Ei with i =5, 10, ..., 50.

= Experiment idea: confuse GenLIP by interleaving routes with noise that
introduce larger polygons and more bad segments than the initial.

" Results: it presents zero misses up to 25% noise. Even adding more noise, the
average classification error rate does not exceed 12.5% (i.e. 10 / 80 misses).

1 _ N
“Inter-cluster quality: For each 0 W,
route in any of the two clusterswe | & IO
apply (k=1)-NN (k is the number of | £ 08 *—p=
the routes in each cluster) queries, g 04 +— AVG(p)
and we sum all the correct < o2
classifications inside the k-1 0

nearest neighbors.

Noise
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‘ Experiments on Spatiotemporal _%OE

" Random selection of 10 trucks, which were compressed using the TD-
TR algorithm described in [MB04] producing similar but not identical
artificial trajectories. We applied the TD-TR compression technique
with parameter values of pin the set {0.02%, 0.05%, 0.1%, 0.15%,
0.2%, 1%, 2%, 5%, 10%} of the length of each trajectory.

Pelekis et al. Mining Trajectory Databases via a Suite of Distance Operators 16



‘Experiments on Spatiotemporal _%‘Oy
T ¢l

" We formed 10 datasets of 10 clusters each, one for each trajectory,
where one dataset is different from the other only in the number of
trajectories per cluster.

" For each dataset, we got all possible pairs of clusters (i.e., 45 cluster
pairs) and we partitioned them into two clusters applying
agglomerative hierarchical clustering.

5 3
» 5 = 3
= 5 2 — 10
Correct il — 1 Erroneous = 10
clustering o clustering (s @)
2, B s 10
M~ 1 — 3
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‘Experiments on Spatiotemporal

Cimitari

&

" Comparison with EDR [COO005], which can identify the NN of
the query trajectory and temporarily/initially identify the correct
cluster at the lower levels of the dendrogram.

" However, at the end it fails in detecting similar trajectories of
almost the same length which have been sampled differently.
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‘ Experiments on Directional

" The same experiment as previously for a subset of the
produced datasets.

Accuracy
o
A

o
o

o
o

o
N

o

0.1% 0.15% 0.2% 0.5% 1% 5%

TD-TR parameter

O DDIST
O TDDIST
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Conclusions

" We proposed novel distance operators, to address different versions
of the so-called trajectory similarity search problem that could
support knowledge discovery in TD.

" To the best of our knowledge, this is the first work that decomposes
the problem into different types of similarity queries based on various
motion parameters of the trajectories.

" The synthesis of the operators under a unified trajectory
management framework provides functionality so far unmatched in
the literature.

" The efficiency and robustness of the operators have been proved
experimentally by performing clustering and classification tasks to
both real and synthetic trajectory datasets.
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Future Work

" We plan to devise appropriate indexing structures in order to
Improve the overall performance of the operators,

" Further qualitative evaluation of the operators.

= Study the quality of L/IPgrams and utilize these similarity
meta-data patterns so as to perform other mining tasks.

" Investigation of extending our techniques to address the

problem of similarity search for trajectories restricted in spatial
networks.
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