Mining Trajectory Databases via a Suite of Distance Operators

Nikos Pelekis¹, Ioannis Kopanakis², Irene Ntoutsi¹, Gerasimos Marketos¹, and Yannis Theodoridis^{1,3}

¹ Dept. of Informatics, Univ. of Piraeus, Greece ²Tech. Educational Institute of Crete, Greece

^{1,3} Computer Technology Institute, Patras, Greece

Outline

- Mining & Similarity Search in Trajectory Databases
 - Problem statement
 - Related Work
 - Motivation
- A framework of semantically different distance operators
 - (Time-relaxed) Spatial Trajectory Similarity
 - (Time-aware) Spatiotemporal Trajectory Similarity
 - Speed-pattern based Similarity
 - Directional Similarity
- Experimental study

Problem Statement

- Advanced LBS would involve moving object trajectories
 - Common queries: range and nearest-neighbor (what-is-around, find-the-nearest etc. services)
- KDD extracting knowledge (e.g. classification & clustering tasks) from trajectory databases
 - the notion of some kind of **distance** function.
- Formally:

Let *D* be a database of trajectories *Ti* and *Q* be a (reference) trajectory consisting of a set of 3D Line Segments.

The *Most-Similar-Trajectory* (MST) S in D with respect to Q is the one that minimizes a distance measure $Dist(Q, T_i)$.

Related Work

- Most approaches inspired by the time series analysis domain [AFS99], [KJF97], [CF99].
- Other approaches deal with basic trajectory features [VGD02], [VGK02], [VKG02], [LS05], [CN04], [COO05]
 - different sampling rates, different speeds
 - possible outliers
 - different scaling factors, different trajectory lengths, local time shift.
- Common characteristic of previous works
 - interested in the movement shape of the trajectories, usually considered as 2D time series.
 - measure the similarity by just considering the sequences of the sampled positions.
 - temporal dimension is **ignored**, leaving the time recordings out of the KDD process.

Motivation

- Real world: trajectories are represented by finite sequences of time-referenced locations.
- Such sequences may result from various approaches [AAP+07]
 - time-based (e.g. every 30 seconds),
 - change-based (e.g. when the location of an entity deviates from the previous one by a given threshold),
 - location-based (e.g. when a moving object is close to a sensor),
 - event-based recording (e.g. when a user requests for localization)
- derived parameters of motion are introduced
 - speed, acceleration, direction, etc.
- A different perspective is required ...

Contribution

- We introduce a framework consisting of powerful distance operators
 - semantically different properties of trajectories, such as locality, temporality, directionality, rate of change, are taken into consideration.
- (time-aware) spatiotemporal similarity: Find clusters of objects that follow similar routes (i.e., projections of trajectories on 2D plane) during the same time interval (e.g. co-location and co-existence from 3pm to 6 pm)
- (time-relaxed) spatial similarity: Find clusters of moving objects taking only their route into consideration (i.e., irrespective of time, direction and sampling rate).

and variations

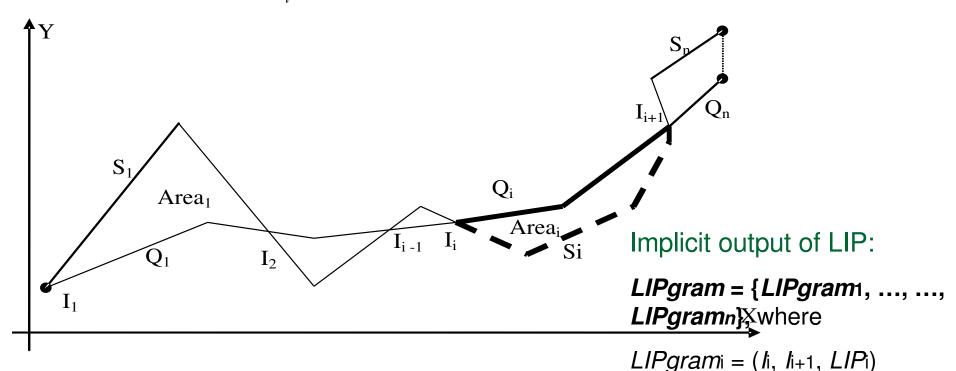
- speed-pattern based spatial similarity: Find clusters of objects that follow similar routes and, additionally, move with a similar speed pattern, and
- directional similarity: Find clusters of objects that follow a given direction pattern (e.g. NE during the first half of the route and subsequently W).

(Time-relaxed) Spatial Trajectory

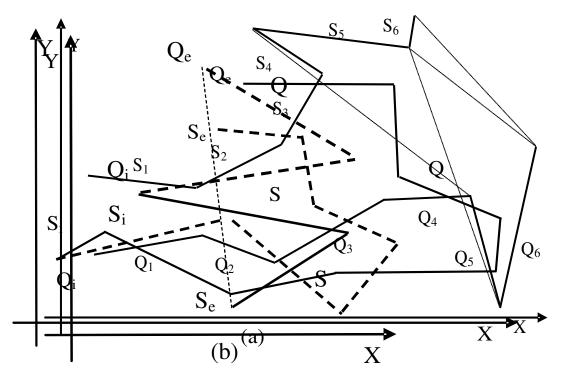
Similarity

Operator: Locality In-between Polylines distance (LIP)

$$LIP(Q,S) = \sum_{\forall polygon_{i}} Area_{i} \cdot w_{i} \quad where w_{i} = \frac{Length_{Q}(I_{i},I_{i+1}) + Length_{S}(I_{i},I_{i+1})}{Length_{Q} + Length_{S}}$$



Special cases for LIP



LIP criterion: the segment implied between the ending points of the currently investigated segments crosses none of the previous segments of Q and S

GenLIP algorithm

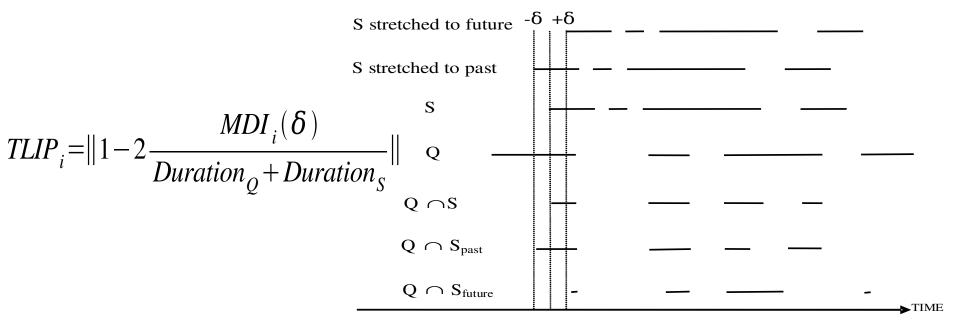

```
Algorithm GenLIP (Q polyline, S polyline, p int)
     WHILE q < Q.LAST AND s < S.LAST
2.
        IF intersect(Q_{q}, S_{s}) THEN
          Mark \mathcal{Q}_{\mathbf{q}} , \mathcal{S}_{\mathbf{s}} as 'good' & add them to \mathcal{Q}' , \mathcal{S}'
3.
       ELSIF NOT Bad(Q', S', Q_{_{\rm G}}, S_{_{\rm S}}) THEN
4.
          Mark Q_{a}, S_{s} as 'good' & add them to Q', S'
5.
6.
       ELSE
7.
          Q_{\rm g}, S_{\rm s} are marked as 'bad'
8.
         FOR k=1 to p
9.
            Give p chances to repair LIP criterion
10.
          NEXT
11.
         IF repairing attempt succeeded THEN
12.
            GOTO line 1 with policy-dependent q_i s
13.
         ELSE
14.
            Recover from attempt and GOTO line 17
15.
          END IF
16. NEXT
                                                       O(MogN) time complexity
17. result = result + LIP(Q', S')
18. Q = Q - Q'
19. S = S - S'
20. RETURN result + GenLIP (Q, S, p)
```

(Time-aware) Spatiotemporal Trajectory Similarity

Operator: Spatiotemporal LIP distance (STLIP)

$$STLIP(Q, S, k, \delta) = \sum_{\forall polygon_i} STLIP_i$$

$$STLIP_i = LIP_i \cdot (1 + k \cdot TLIP_i)$$
, where $k \ge 0$



Speed-pattern based Similarity

Operator: Speed-Pattern LIP distance (SPLIP).

$$SPSTLIP(Q, S, k, l, \delta) = \sum_{\forall polygon_i} SPSTLIP_i$$

$$SPSTLIP_i = LIP_i \cdot (1 + k \cdot TLIP_i) \cdot (1 + l \cdot SPLIP_i)$$

$$SPLIP_{i} = \frac{\|LQ_{Qp_{i}} - LS_{Qp_{i}}\|}{LQ_{Qp_{i}}}$$

(Time-relaxed) Directional

Similarity
Operator: Directional Distance (DDIST)

$$DDIST(Q, S) = \sum_{\forall \varphi_{i}} DDIST_{\varphi_{i}}$$

$$DDIST_{\varphi_{i}} = \frac{\varphi_{i}}{\pi} i_{w_{i}} \qquad w_{i} = \frac{length(Q_{\varphi_{i}}) + length(S_{\varphi_{i}})}{length(Q) + length(S)}$$

$$Y = \frac{S_{\varphi_{1}}}{S_{\varphi_{2}}} \cdot \frac{S_{\varphi_{3}}}{S_{\varphi_{3}}} \cdot \frac{S_{\varphi_{4}}}{S_{\varphi_{5}}} \cdot \frac{S_{\varphi_{5}}}{S_{\varphi_{6}}} \cdot \frac{S_{\varphi_{6}}}{S_{\varphi_{6}}}$$

(Time-aware) Directional Similarity

Operator: Temporal Directional distance (TDDIST)

$$TDDIST(Q,S) = \frac{\sum_{\forall Q_i} DDIST_{\varphi_i}(Q_i, S_{Q_i})}{i i}$$

Experimental Study - Datasets

- Real data fleet of trucks (276) available in [The]
 - □ Manual extraction of 2 clusters (i.e. $E \rightarrow N \rightarrow W \rightarrow S$ & $N \rightarrow E$ patterns)
- Synthetic datasets generated by the GSTD data generator [TSN99]
 - Manual incorporation of Gausian noise

Manual increase of their sampling rate

GenLIP Quality

- "Leave-One-Out" classification introduced by Keogh et al. [KK02].
- Usage of the datasets having noise M, Si, W and E with i = 5, 10, ..., 50.
- **Experiment idea**: confuse GenLIP by interleaving routes with noise that introduce larger polygons and more *bad* segments than the initial.
- **Results**: it presents zero misses up to 25% noise. Even adding more noise, the average classification error rate does not exceed 12.5% (i.e. 10 / 80 misses).

Inter-cluster quality: For each route in any of the two clusters we apply (k−1)-NN (k is the number of the routes in each cluster) queries, and we sum all the correct classifications inside the k−1 nearest neighbors.



Experiments on Spatiotemporal

Similarity 1/3

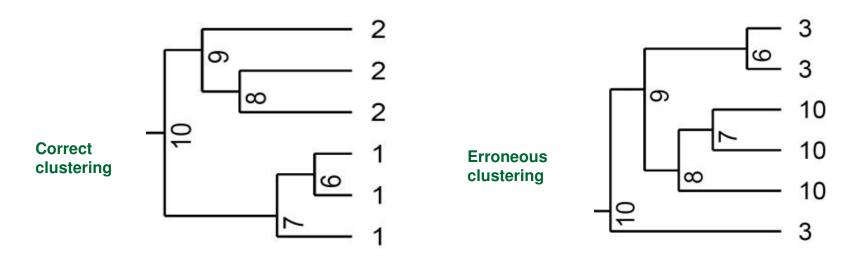
Random selection of 10 trucks, which were compressed using the TD-TR algorithm described in [MB04] producing similar but not identical artificial trajectories. We applied the TD-TR compression technique with parameter values of p in the set {0.02%, 0.05%, 0.1%, 0.15%, 0.2%, 1%, 2%, 5%, 10%} of the length of each trajectory.



Experiments on Spatiotemporal

Similarity 2/3

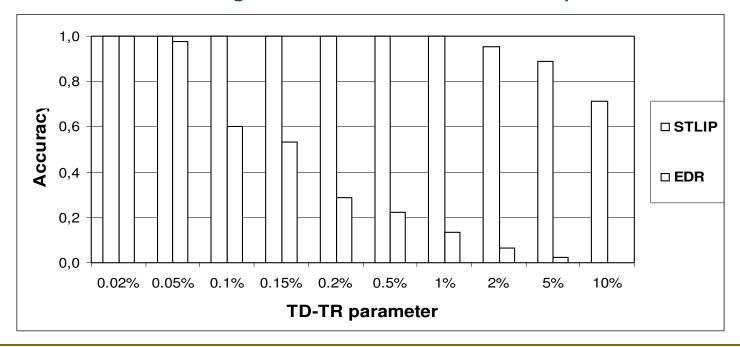
- We formed 10 datasets of 10 clusters each, one for each trajectory, where one dataset is different from the other only in the number of trajectories per cluster.
- For each dataset, we got all possible pairs of clusters (i.e., 45 cluster pairs) and we partitioned them into two clusters applying agglomerative hierarchical clustering.



Experiments on Spatiotemporal

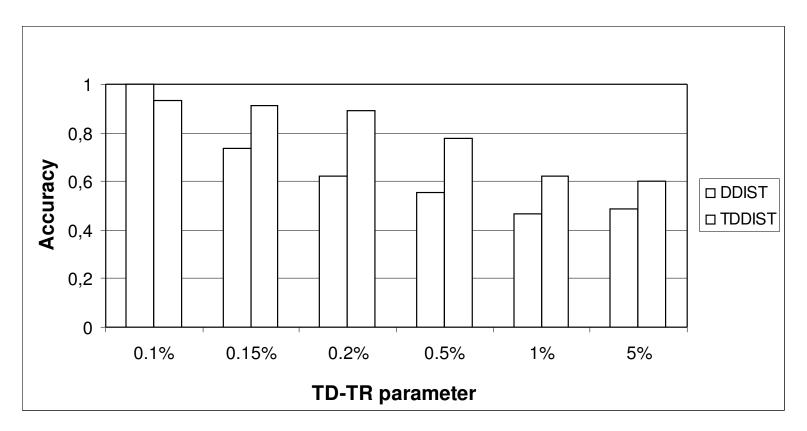
Similarity 3/3

- Comparison with EDR [COO05], which can identify the NN of the query trajectory and temporarily/initially identify the correct cluster at the lower levels of the dendrogram.
- However, at the end it fails in detecting similar trajectories of almost the same length which have been sampled differently.



Experiments on Directional

SimilarityThe same experiment as previously for a subset of the produced datasets.



Conclusions

- We proposed novel distance operators, to address different versions of the so-called **trajectory similarity search** problem that could support knowledge discovery in TD.
- To the best of our knowledge, this is the first work that decomposes the problem into different types of similarity queries based on various motion parameters of the trajectories.
- The synthesis of the operators under a unified trajectory management framework provides functionality so far unmatched in the literature.
- The efficiency and robustness of the operators have been proved experimentally by performing clustering and classification tasks to both real and synthetic trajectory datasets.

Future Work

- We plan to devise appropriate indexing structures in order to improve the overall performance of the operators,
- Further qualitative evaluation of the operators.
- Study the quality of LIPgrams and utilize these similarity meta-data patterns so as to perform other mining tasks.
- Investigation of extending our techniques to address the problem of similarity search for trajectories restricted in spatial networks.

References 1/2

- [AAP+07] N. Andrienko, G. Andrienko, N. Pelekis, and S. Spaccapietra, "Basic Concepts of Movement Data", chapter in F. Giannotti and D. Pedreschi (eds.) *Geography, Mobility and Privacy: A Knowledge Discovery Vision*, Springer, 2007, to appear.
- [AFS99] R. Agrawal, C. Faloutsos, and A. Swami, "Efficient Similarity Search in Sequence Databases", Proceedings of *FODO*, 1993.
- [CF99] K.P. Chan and A.W-C Fu, "Efficient time series matching by Wavelets", Proceedings of *ICDE*, 1999.
- [CN04] L. Chen and R. Ng, "On the marriage of edit distance and Lp norms", Proceedings of *VLDB*, 2004.
- [COO05] L. Chen, M. Tamer Özsu, and V. Oria, "Robust and Fast Similarity Search for Moving Object Trajectories", Proceedings of *ACM SIGMOD*, 2005.
- [KK02] E. Keogh and S. Kasetty "On the need for time series data mining benchmarks: a survey and empirical demonstration". Proceedings of *SIGKDD*, 2002.
- [KJF97] F. Korn, H. Jagadish, and C. Faloutsos, "Efficiently Supporting Ad hoc Queries in Large Datasets of Time Sequences", Proceedings of ACM *SIGMOD*, 1997.
- [MB04] N. Meratnia and R.A. de By, "Spatiotemporal Compression Techniques for Moving Point Objects", Proceedings of *EDBT*, 2004.

References 2/2

- [The] Y. Theodoridis, "R-tree Portal", www.rtreeportal.org (URL valid on February 12, 2007).
- [TSN99] Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento, "On the Generation of Spatio-temporal Datasets", Proceedings of *SSD*, 1999.
- [VGD02] M. Vlachos, D. Gunopulos, and G. Das, "Rotation Invariant Distance Measures for Trajectories", Proceedings of *SIGKDD*, 2002.
- [VGK02] M. Vlachos, D. Gunopulos, and G. Kollios, "Robust Similarity Measures for Mobile Object Trajectories", Proceedings of *MDDS*, 2002.
- [VKG02] M. Vlachos, G. Kollios, and D. Gunopulos, "Discovering Similar Multidimensional Trajectories", Proceedings of *ICDE*, 2002.
- [LS05] B. Lin, and J. Su, "Shapes Based Trajectory Queries for Moving Objects", Proceedings of *ACM GIS*, 2005.