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Abstract 
 

With the rapid progress of mobile devices and 

positioning technologies, Trajectory Databases (TD) have 

been in the core of database research during the last 

decade. Analysis and knowledge discovery in TD is an 

emerging field which has recently gained great interest. 

Extracting knowledge from TD using certain types of 

mining techniques, such as clustering and classification, 

impose that there is a mean to quantify the distance 

between two trajectories. Having as a main objective the 

support of effective similarity query processing, existing 

approaches utilize generic distance metrics that ignore the 

peculiarities of the trajectories as complex spatio-

temporal data types. In this paper, we define a novel set of 

trajectory distance operators based on primitive (space 

and time) as well as derived parameters of trajectories 

(speed and direction). Aiming at providing a powerful 

toolkit for analysts who require producing distance 

matrices with different semantics as input to mining tasks, 

we develop algorithms for each of the proposed operators. 

The efficiency of our approach is evaluated through an 

experimental study on classification and clustering tasks 

using synthetic and real trajectory datasets. 

 

1. Introduction 
 

A Trajectory Database (TD) consists of objects whose 
location changes over time (e.g. moving humans or 
vehicles). With the integration of wireless communications 
and positioning technologies, the concept of TD has 
become increasingly important, and has posed great 
challenges to the data mining community [14]. In this 
work, we initially study the problem of trajectory similarity 
search in TD, where, given the trajectories of two moving 
objects (i.e., the sequence of their locations with respect to 

time), we detect and quantify their (dis-)similarity, hence 
their distance. Having in hand a powerful set of distance 
operators, each of them describing semantically different 
interrelation properties between trajectories, we investigate 
their utilization in clustering and classification tasks, which 
fundamentally rely on the notion of distance among the 
data under analysis. 

The support of efficient trajectory similarity techniques 
is indisputably very important for the quality of data 
analysis tasks in TD. This justifies the fact that during the 
last decade there has been a lot of work in the literature 
regarding trajectory similarity search. Most of the existing 
approaches so far are mainly inspired by the time series 
analysis domain and propose generic similarity metrics for 
1D data [2], [17], [6]. Other approaches deal with some 
basic trajectory features [28], [29], [33], [9], [10], such as 
the different sampling rates on trajectories, the different 
speeds of moving objects, the possible outliers that might 
be introduced due to an anomaly in data collection 
procedure, the different scaling factors, the different 
trajectory lengths, etc. The common characteristic of 
previous works is that they are interested in the movement 
shape of the trajectories, which are usually considered as 
2D or 3D time series data. In other words, what is 
important in measuring the similarity between two 
trajectories is just the sequences of the sampled positions. 
This means that the temporal dimension is ignored, leaving 
the time recordings out of the knowledge discovery 
process. In real world applications though, trajectories are 
represented by finite sequences of time-referenced 
locations. What is more, such sequences may result from 
time-based (e.g. every 30 seconds), change-based (e.g. 
when the location of an entity deviates from the previous 
one by a given threshold), location-based (e.g. when a 
moving object is close to a sensor), event-based recording 
(e.g. when a user requests for localization), or even various 
combinations of these basic approaches [1]. A different 
perspective is required therefore, capable of coping with 



real world application scenarios. In addition to the above, 
TD introduce issues related with derived parameters of 
motion, such as speed and direction. 

To the best of our knowledge, there is no work on 
classifying the different similarity types that can be defined 
based on these underlying features of the trajectories. In 
this paper, we provide such a classification and propose 
novel distance operators, which can be exploited by 
mining procedures intrinsically requiring distance 
information. Our approach takes under consideration all 
the factors that characterize a trajectory (locality, 
temporality, directionality, rate of change) and formulates 
a flexible framework for the comparison of trajectories 
based on the above factors. Furthermore, the incremental 
and partial nature of the defined distance operators makes 
them capable of comparing trajectories partially, 
identifying similarities even in portions of their route. This 
is in contrast to other approaches that only define global 
metrics for the whole lifespan of the trajectories. As a 
motivating example, consider a location-based data 
management system, which monitors the movement of 
GPS-equipped moving objects; public transport means, 
animals under supervision or humans (walkers or drivers) 
could be real world examples. Experts in the field would 
be advantaged if they could run analysis tasks, such as: 
• Task 1 – spatiotemporal similarity: Find clusters of 

objects that follow similar routes (i.e., projections of 
trajectories on 2D plane) during the same time interval 
(e.g. co-location and co-existence from 3pm to 6 pm) 
and 

• Task 2 – (time-relaxed) spatial-only similarity: Find 
clusters of moving objects taking only their route into 
consideration (i.e., irrespective of time, direction and 
sampling rate). 

and variations of the above, such as: 
• Task 3 – speed-pattern based spatial similarity: Find 

clusters of objects that follow similar routes and, 
additionally, move with a similar speed pattern, and 

• Task 4 – directional similarity: Find clusters of 
objects that follow a given direction pattern (e.g. NE 
during the first half of the route and subsequently W). 

Since our framework is based on query processing 
operators, the novelty of our approach is augmented by the 
following two inter-related facts: (1) the combination of 
the tasks (using AND/OR clauses) provides analysis 
functionality unmatched so far (e.g. “find trajectories that 
moved closely in space but following opposite directions 
and with very dissimilar speed”); (2) the output of each of 
the supported operators defines similarity patterns that can 
be utilized to reveal local similarity features (e.g. “find the 
most similar portions between two dissimilar trajectories”). 

The major contributions of this paper are the following: 
• We define two main types of trajectory similarity 

search, spatiotemporal and (temporally-relaxed) 

spatial similarity, as well as two variations, speed-
pattern based spatial and directional similarity. 

• For each type of similarity query we introduce 
distance operators, and we propose respective query 
processing algorithms. 

• We demonstrate how these algorithms implicitly 
define similarity patterns to expose stratified 
commonalities, wherein portions of trajectories that 
are similar to each other may be detected. 

• We conduct a comprehensive set of experiments over 
synthetic and real trajectory datasets, in order to 
thoroughly evaluate our approach supporting 
classification and clustering tasks. 

The rest of the paper is structured as follows: Problem 
statement and related work are discussed in Section 2. In 
Sections 3, 4 and 5, we describe in detail the different 
types of similarity search (spatial, spatiotemporal and 
variations, respectively) and respective search algorithms. 
In Section 6, we present the results of our experimental 
study. Section 7 concludes the paper and provides ideas 
for future work. 

 

2. Problem Statement and Related Work 
 

Before we define the different types of similarity search 
addressed in this paper, we first present the notations 
utilized hereafter. Let D be a database of N moving objects 
with object ids {o1, o2, …, oN}. Assuming linear 
interpolation between sampled locations, the trajectory Ti 
of a moving object oi consists of a set of 3D Line 
Segments (3DLS), where each 3DLS represents the 
continuous development of the moving object during 
sampled locations. In other words, the movement of an 
object from a starting position (xs, ys) to an ending position 
(xe, ye) during a time period [ts, te] is described by a linear 
function of time fi(t). Projecting Ti on the spatial 2D plane 
(temporal 1D line), we get the route ri (the lifespan li) of 
oi. Moreover, additional motion parameters can be derived 
by fi(t), including speed s, direction angle φ, etc. 
Obviously, no assumptions of equal distanced time 
intervals between the sampled points are posed. 

Definition 1: Let D be a database of trajectories Ti and 
Q be a (reference) trajectory consisting of a set of 3DLS. 
The Most-Similar-Trajectory (MST) S in D with respect to 
Q is the one that minimizes a distance measure Dist(Q,Ti). 

The distance measure Dist(Q,Ti) is application-driven 
and may involve any combination of trajectory features, 
such as spatial projection (route), temporal projection 
(lifespan), speed and direction. Taking both route and 
lifespan into consideration, Dist(Q,Ti) addresses Task 1 
presented in Section 1; considering only route Task 2 is 
addressed, and so on. 



Route, lifespan, speed and direction of a moving object 
trajectory are classified as motion dependant parameters. 
There also exist data dependant parameters that affect 
similarity search, such as length, scale, shift, sampling rate 
and outliers’ existence, which have been the main research 
issues in related work. In this paper, we focus on the 
former class of parameters, as we treat the problem from a 
TD perspective. 

Most of related work in trajectory similarity search is 
inspired by the time series analysis domain, based on 
mapping a trajectory into a vector in a feature space and 
using an Lp-norm distance function to define the similarity 
measure. The advantage of this approach is that it exploits 
on a dimensionality reduction technique, which allows the 
similarity between the trajectory vectors in the time 
domain to be approximately equal to the similarity 
between the two points in the feature domain. 

Agrawal et al. [2] adopt the Discrete Fourier 
Transformation (DFT) to be the feature extraction 
technique since DFT preserves the Euclidean distance and, 
furthermore, only the first few frequencies are important. 
Rafiei and Mendelzon [24] use Fourier descriptors to 
represent shapes boundaries, compute a fingerprint for 
each shape and build a multidimensional index (R-tree) on 
fingerprints. The distance between two shapes is 
approximated by the distance of the corresponding 
fingerprints. This distance is not affected by variations in 
location, size, rotation and starting point. 

Although Euclidean measures are easy to compute, they 
do not allow for different baselines or different scales. The 
main drawback of these methods is that their performance 
degrades in the presence of noise and outliers since all 
elements should be matched. To address the disadvantages 
of the Lp-norm, Goldin and Kanellakis [15] use 
normalization transformations, i.e., they normalize 
sequences and compute the similarity between normalized 
sequences. Although this method solves some problems 
like the different baselines, it is still sensitive to phase 
shifts in time and does not allow for acceleration along the 
time axis. Lee et al. [18] compute the distance between two 
multidimensional sequences by finding the distance 
between minimum bounding rectangles. Two approaches, 
which also use Euclidean distances, include the lower 
bound techniques [5] and the shape-based similarity query 
[30]. However, both approaches can be applied only on 
trajectories with same lengths. 

Another approach is based on Dynamic Time Warping 
(DTW) technique that allows stretching in time in order to 
get a better distance [3]. DTW has been adopted in order 
to measure distances between two trajectories that have 
been represented as path and speed curves [19] or as 
sequences of angle and arc-length pairs [27]. Sakurai et al. 
[31] present the Fast search method for Dynamic Time 
Warping, utilizing a new lower bounding distance measure 

that approximates the time warping distance. Lin and Su 
[32] introduce the “One Way Distance” (OWD) function 
and they prove that their approach outperforms DTW 
algorithm as far as precision and performance is 
concerned. The DTW similarity measure suffers from 
shortcomings such as sensitivity to different baselines and 
scales of the sequences that can be reduced by first 
normalizing the sequences. 

Several approaches use the Longest Common Sub 
Sequence (LCSS) similarity measure [4]. The basic idea is 
to match some sequences by allowing some elements to be 
unmatched. The advantage of the LCSS method is that it 
allows outliers, different scaling functions, and variable 
sampling rates. Vlachos et al. [29] use the LCSS model to 
define similarity measures for trajectories. The LCSS 
model is extended by considering a set of translations and 
finding the translation that yields the optimal solution to 
the LCSS problem. Based on the LCSS definition for 
trajectories, the authors propose two measures, which 
allow time stretching and translations, respectively. An 
index structure is also presented, which is based on 
hierarchical clustering. The use of LCSS in trajectory 
similarity proposed in [29] has the drawback that it 
penalizes the points that were marginally outside the 
matching region by assigning to them a similarity value of 
zero. To deal with this problem authors propose a non-
metric distance function based on the LCSS in conjunction 
with a sigmoid matching function [28]. 

In order to overcome the inefficiency of the previously 
described methods in the presence of noise or obstacles, 
Chen et al. [10] recently proposed a new distance function 
called Edit Distance on Real sequences (EDR), based on 
the Edit Distance (ED) widely used in bio-informatics and 
speech recognition to measure the similarity between two 
strings. Their extensive experimental evaluation shows that 
the proposed distance function is more robust than the 
Euclidean distance, the DTW and ERP [9] and more 
accurate than LCSS, especially when dealing with 
trajectories having Gaussian noise. 

Recently, Frentzos et al. [13] proposed a similarity 
metric (and an approximation method to reduce its 
calculation cost) in order to support MST search by 
utilizing R-tree-based trajectory indexing structures. 

As previously mentioned, in this paper we follow a 
different approach by providing a classification of various 
types of distance operators, each one of them extracting 
valuable similarity properties based on motion dependant 
parameters, as such, forming a powerful framework for TD 
analysis tasks. 

 

 



3. (Time-relaxed) Spatial Trajectory 

Similarity Search 
 
In this section and before we define the spatiotemporal 

similarity between trajectories, we tackle the problem of 
measuring the spatial similarity of two moving objects as 
an intermediate step towards the general case. To this 
effect, we propose a novel distance operator, called 
Locality In-between Polylines (LIP). Intuitively, two 
moving objects are considered spatially similar when they 
move close (i.e. their routes approximate each other) at the 
same place irrespective of time and direction. As such, LIP 
defines a distance function upon the (projected on the 
Cartesian plane) routes of the trajectories. The idea is to 
calculate the area of the shape formed by two 2D 
polylines, which are the outcome of the above projection 
(see Figure 1). Formally: 

Definition 2: The Locality In-between Polylines (LIP) 
distance between two trajectories Q and S is defined as 
follows: 

∑
∀

⋅=
i polygon

ii wAreaSQLIP  ),(  
(1) 

where polygoni is a member of the set of polygons 
formulated between intersection points (I1, I2, … In) 
created by the overlay of Q and S in 2D plane. 

An example of the routes of two trajectories Q and S 
and the respective areas that contribute in LIP(Q,S) is 
illustrated in Figure 1. 
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Figure 1: Locality In-between 2D Polylines 

 
Each polygon area is biased by a contribution (weight), 

which is defined as follows: 
Definition 3: Let LengthQ(Ii, Ii+1) and LengthS(Ii, Ii+1) 

be the lengths of the portions of Q and S that participate in 
the construction of polygoni. The contribution [ ]1,0∈iw  of 

polygoni in LIP(Q,S) is: 

SQ
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Note that the numerator of the above equation is the 
perimeter of the polygon in question, while the 
denominator is the sum of the total length of the routes. 

It is easily implied that LIP is a distance operator that 
may be intuitively utilized by a user (e.g. posing a query of 
the form “find similar trajectories that passed three 
building blocks (<100m2) away from my route”). A 
powerful feature of the LIP operator is that it does not only 
provide a global measure for the similarity of two 
trajectories. LIP further quantifies the distance among 
portions of the trajectories. These portions are not 
statically predefined. For example, the implicit output of 
the LIP operator is a distance list of the form LIPgram = 
{LIPgram1, …, LIPgrami, LIPgrami+1, …, LIPgramn}, 
where LIPgrami = (Ii, Ii+1, LIPi), is a triplet that implies the 
distance LIPi between points Ii and Ii+1. It is a trivial task 
therefore to perform queries upon the resulted LIPgram so 
that to find parts of trajectories that diverge or converge 
and, as such, to cluster subsets of the above trajectories.  

The LIP distance function described so far works 
correctly with pairs of trajectories whose spatial 
deployment follows, on the average, a stable trend with no 
dramatic rotations (e.g. like the ones illustrated in Figure 
1), or if they are rotating, they do so by turning similarly 
during their motion (Figure 2a). In the case, for example, 
where S starts rotating clockwise and Q counterclockwise 
then the resulting polygons of the LIP algorithm will be 
self-intersected (non-simple polygons) and, as an outcome 
the distance measure may be meaningless or even 
indefinite (Figure 2b). To deal with this issue we provide 
the following mechanism that makes LIP operator 
universal in utilization: During traversing polylines Q and 
S and constructing polygons polygoni, we identify the so-
called bad segments that violate the simplicity property of 
the under-construction polygons, as they exhibit diverging 
rotation in contrast to their coupling trajectory. When the 
algorithm detects these segments, it closes the current 
polygon by connecting the initial points of the bad 
segments. Then, it invokes the LIP function for the already 
investigated portions of the polylines that for sure result to 
simple polygons, and recursively restarts itself with the 
remaining portions of the initial polylines as parameters. 
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Figure 2: Exceptional cases for LIP operator 

 
Let us now define a simple yet effective criterion that 

categorizes a pair of segments (Si ∈ S, Qi ∈ Q) as either 
good or bad. This condition requires that the segment 
implied between the ending points of the currently 



investigated segments does not cross any of the previous 
segments of Q and S. This is a strict requirement that may 
lead searching backwards till the beginning of the 
polylines. Actually, this is not necessary as the effect of the 
bad segments is local and can be treated by testing just a 
small number of segments for intersection. To this line, the 
algorithm GenLIP, illustrated in Figure 3, searches for bad 
segments and acts as a driver for the invocation of the LIP 
distance operator. 
Algorithm GenLIP(Q polyline, S polyline, p int) 

1.  WHILE q < Q.LAST AND s < S.LAST 

2.    IF intersect(Qq, Ss) THEN 

3.      Mark Qq,Ss as ‘good’ & add them to Q’,S’ 

4.    ELSIF NOT Bad(Q’, S’, Qq, Ss) THEN 

5.      Mark Qq,Ss as ‘good’ & add them to Q’,S’ 

6.    ELSE 

7.      Qq, Ss are marked as ‘bad’ 

8.      FOR k=1 to p 

9.        Give p chances to repair LIP criterion 

10.     NEXT 

11.     IF repairing attempt succeeded THEN 

12.       GOTO line 1 with policy-dependant q,s  

13.     ELSE 

14.       Recover from attempt and GOTO line 17 

15.     END IF 

16.  NEXT 

17.  result = result + LIP(Q’, S’) 

18.  Q = Q – Q’ 

19.  S = S – S’ 

20.  RETURN result + GenLIP(Q, S, p) 

Figure 3: GenLIP Algorithm 

 
More specifically, the algorithm begins traversing the 

segments of Q and S until the last segment of either Q or S 
is reached (line 1). At each step it checks whether the two 
segments are intersected (line 2). Since intersection is an 
indicator of proximity, the two segments are marked as 
good and are added as tails to two polylines Q’ and S’, 
representing the certified portions of Q and S, respectively, 
that fulfill the aforementioned requirement. The same 
happens when the test whether the inclusion of the 
currently investigated segments to Q’ and S’ characterizes 
them as bad, is negative. In the positive case, these 
segments are marked as bad and subsequently, a chance is 
given to the next p segments to repair the failure of the LIP 
criterion. If we succeed to find good segments in the 
following p segments then these are marked and added (as 
all of the intermediate bad segments are) to Q’ and S’ and 
the procedure continues in the same way (lines 11-12). If 
we fail then the procedure first recovers from the previous 
repairing attempt, and secondly stops the procedure, 
invokes the LIP operator for Q’ and S’, and recursively 
calls the GenLIP for the rest of the initial polylines. 
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Figure 4: Demonstration of good and bad segments 

 
To demonstrate the previous discussion, Figure 4 

illustrates the routes of two trajectories Q and S for which 
the GenLIP procedure identifies (S4, Q4) as a pair of bad 
segments. If no repairing attempt is performed then the LIP 
distance function will be initially applied for Q’ = {Q1, Q2, 
Q3} and S’ = {S1, S2, S3}. On the other hand, if a look-
forward repairing attempt is applied (e.g. p=2) then LIP 
will be applied for Q’ = {Q1, Q2, Q3, Q4, Q5, Q6} and S’ = 
{S1, S2, S3, S4, S5, S6}. 

 

4. (Time-aware) Spatiotemporal Trajectory 

Similarity Search 
 

The LIP distance operator does not include the notion 
of time as it just compares the projections of moving 
objects to the Cartesian plane. In this section, we propose a 
novel distance operator, called Spatiotemporal LIP 
(STLIP), to tackle the problem of measuring the spatio-
temporal similarity between two trajectories. Intuitively, 
two moving objects are considered similar in both space 
and time when they move close concurrently at the same 
place. The idea is to utilize LIP and define STLIP as a 
multiple of LIP. In other words, STLIP is calculated by 
multiplying LIP by a factor having values greater than 1, 
implying the temporal distance of the corresponding LIP. 

Definition 4: The Spatiotemporal LIP distance 
(STLIP) between two trajectories Q and S is defined as 
follows: 

∑
∀

=
i polygon

iSTLIPkSQSTLIP ),,,( δ  
(3) 

where STLIPi for polygoni is defined as: 
 

( ) 0k  where,1 ≥⋅+⋅= iii TLIPkLIPSTLIP . 
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Temporal LIP (TLIP) is a measure modeling the local 
temporal distance and participates to the STLIP measure 
by a penalty factor k which represents user’s assigned 
importance to the time-factor. 

In order to define the local temporal distance TLIPi and 
associate it with the corresponding LIPi implicitly 
introduced by the polygons we need to find the timepoints 



when Q and S cross each other. Let Qt_Ii be the timepoint 
when Q passes from intersection point Ii and Qt_Ii+1 be the 
timepoint when Q reaches the next intersection point Ii+1. 
Respectively, St_Ii and St_Ii+1 are the corresponding 
timepoints for S. These pairs of timepoints define the 
periods that each point needs to traverse its route from one 
intersection to the other. Let Qpi = [Qt_Ii, Qt_Ii+1) and Spi 

= [St_Ii, St_Ii+1) be these periods. Having this in mind, we 
define MDI as the maximum duration of the temporal 
element (the list of time periods, each one representing the 
lifespan of a particular section of the motion) that is the 
outcome of the intersection between Qpi and one of the 
following three alternatives: a) S’s temporal projection 
(Spi), b) Spi stretched towards future by a temporal interval 
δ (Spi+δ), c) S’s temporal projection stretched to the past 
by δ (Spi-δ). To this end, we define the temporal similarity 
for this LIPi as formulated in Eq.5. 
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MDI has been incorporated in order to support almost 
concurrent movements. This happens by introducing the 
parameter δ, a time window (tolerance in the past as well 
as in the future) in which two trajectories, though not 
moving concurrently, are considered temporally close. 

In terms of implementation, STLIP works in the same 
fashion as LIP does. First, Q and S are projected to the 
temporal domain to get their lifespans. Subsequently, the 
intersection of the two lifespans is found and, then, the 
original trajectories are restricted according to this 
common temporal element and projected on the spatial 2D 
plane so as to find the polylines upon which GenLIP will 
be applied. 
 

5. Variations 
 

Expanding our framework, in this section we describe 
two variations of the previously presented operators. These 
variations enhance our distance functions by taking into 
consideration the rate of change (i.e. speed, acceleration) 
and directional (i.e. turn) characteristics of the trajectories. 
 
5.1. Speed-pattern based Similarity Search 
 

In order to support the first variation, we introduce a 
new distance operator, called Speed-Pattern STLIP 
(SPSTLIP), to measure the distance between two 
trajectories that move with similar speed pattern relaxing 
either space or time features. Two interesting scenarios, 
which also find realistic applications, are the following: 
• 1

st
 scenario: We are not interested in time dimension; 

what we know about Q and S is their speed v at 
different segments seg in their route. In this case, the 
problem is to find the similarity between Q = {(segQ,1, 

vQ,1), …(segQ,n, vQ,n)} and S = {(segS,1, vS,1), …(segS,n, 
vS,n)}. 

• 2
nd

 scenario: We are not interested in space dimension; 
what we know about Q and S is their speed v at 
different periodes of time per. The problem here is to 
find the similarity between Q = {(perQ,1, vQ,1), 
…(perQ,n, vQ,n)} and S = {(perS,1, vS,1), …(perS,n, vS,n)}. 

These two scenarios are special cases of finding the 
similarity between two 1D time series and there are well-
known methods to perform such tasks. What is more, the 
above cases imply that the points are moving with constant 
speed, which is the case of synthetic motions. Our 
approach is to find similarities of points moving with 
fluctuated speed and/or acceleration and may be randomly 
sampled which is the realistic case. 

We define SPSTLIP by multiplying STLIP with a factor 
greater than 1, which is an indicator of the corresponding 
Speed-Pattern distance (SPLIP). As such, there is a need to 
define the local SPLIP and associate it with the 
corresponding LIP, as well as the respective TLIP. We 
define the local SPSTLIP for polygoni as: 

( ) ( )iiii SPLIPlTLIPkLIPSPSTLIP ⋅+⋅⋅+⋅= 11  (6) 
where k, l 0≥  and 
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where 
iQpLQ  measures the distance traversed by Q 

between two intersection points Ii and Ii+1, while 
iQpLS  is 

the length of the section of S trajectory restricted at the 
periods Qpi during which Q moves from Ii to Ii+1. Note that 
if we omit the ( )iTLIPk ⋅+1  factor in equation 7, the 

operator becomes time-relaxed as it estimates the distance 
among trajectories taking into consideration the spatial and 
speed parameters, irrelevantly to their lifespans. 

In order for SPLIP to vary between 0 and 1, LSQt_I 
should not be greater than 2·LQQt_I. In order to enforce it, 
we partition the TD into subsets according to speed, so that 
the fastest moving object within each subset is at most α = 
2 times the slowest. As such, for objects moving with 
speed difference higher than α we consider them as non-
similar. The overall SPSTLIP between two trajectories Q 
and S is defined as: 

Definition 5: The Speed-Pattern Spatiotemporal LIP 
distance (SPSTLIP) between two trajectories Q and S is 
defined as follows: 

∑
∀

=
ipolygon

iSPSTLIPlkSQSPSTLIP
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In contrast to STLIP, the implementation of SPSTLIP 
further needs to delimit the 3D development of S inside 
Qpi and subsequently project the resulting moving point on 
the spatial plane. 



 
5.2. Directional Similarity Search 
 

A second variation supports similarity of the form: 
“Find similar trajectories according to their turns”. Based 
on such kind of similarity we could further cluster 
trajectories that move i.e. initially NW (during period A in 
place B) and then NE (during period C in place D). We 
define Direction Similarity (DSIM) between Q and S as 
follows: 

Definition 6: The Directional Similarity (DSIM) 
between two trajectories Q and S is defined as follows: 

∑
∀

=
i

i
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φ
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is the similarity defined between two segments of Q and S 
characterized by the angle φi they form. 

This angle ranges from 0° (full similarity, DSIM = 1) to 
180° (full dissimilarity, DSIM = 0) and is reduced by a 
weight wi corresponding to the percentage of Q and S 
trajectory that participate in the similarity. So, if 

i
Qφ and 

i
Sφ are the parts of Q and S, respectively, where φi is the 

angle between them, wi is defined as: 
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Figure 5 depicts that the angle φi formed between two 
segments of Q and S change to φi+1 whenever either Q or S 
changes direction. This means that a change occurs at the 
ending points of each sub-movement of Q and S. 
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Figure 5: Direction similarity on projected trajectories 

 
Let us now examine how the angle between the 

directions of two moving objects is calculated. First of all, 
the direction of a moving object during a period where its 
motion vector remains constant is the angle formed 
between the xx’ axis and the line segment from the initial 
i(xi, yi) to the ending point e(xe, ye), measured in degrees 
(0° ≤ direction < 360°). 

In order to calculate the angle between two directed 
segments and scale this angle between 0° and 180° there is 
a need for a small examination according to which 
quadrant Q and S are moving towards. We identify sixteen 
different cases. Below we examine four of them, where Q 
is moving towards the 1st quadrant (0° ≤ dir(Q) < 90°) and 
S is moving towards the 1st, the 2nd, the 3rd, and the 4th 
quadrant, respectively. 
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The third case is when Q and S are moving towards anti-
diametric quadrants. In this case, if the angle is greater 
than 180° the angle is adjusted to the symmetric angle 
formed by Q’s extended line. The remaining twelve cases 
follow similar strategies. 

The algorithm that implements DSIM starts traversing 
the coordinates’ list of both Q and S projected polylines 
until it reaches the end of one of them. Two indexes 
control the access to the points’ lists. Only one of the two 
indexes is advanced at each step depending on which 
polyline changes its direction. At each step, the algorithm 
calculates the angle formed between the segments starting 
from the points currently indexed in the lists (Qs and Ss) 
and ending to their subsequent (Qe and Se). This occurs 
after the translation of the segment S_seg (Ss, Se) towards 
segment Q_seg (Qs, Qe). The next step is to find which of 
the x-ordinates of the ending points is closer, in terms of 
Euclidean distance, to the point where the previous change 
of direction occurred. Finding which is the closest point, 
makes us aware of where the end of 

i
Qφ or 

i
Sφ reside. So if 

the closest next x is that of Qe then the end of 
i

Qφ  is Q’s 

next point, while the end of 
i

Sφ is the projection of Qe to 

the currently investigated segment of S. In such case we 
advance the index of Q coordinates’ list, while we keep 

i
Sφ so as we clip S_seg by 

i
Sφ (bold portion of 

1φS  in 

Figure 5) before the calculation of the next angle φi. In the 
same way, if the closest next x is that of Se then the end of 

i
Sφ  is S’s next point, while the end point of 

i
Qφ  is the 

projection of Se to the currently investigated segment of Q. 
Similarly, this time we advance the index of S’s 
coordinates list and we clip Q by 

i
Qφ (bold portion of 

2φQ  

in Figure 5). To find the above projection points there are 
two cases in proportion of whether S_seg and Q_seg are 
directed towards the same or opposite half-planes defined 



by the yy’ axis. In the first case, the x ordinate of the 
projection point is the closest next x while in the second 
case the required x ordinate is that of the doubled x of the 
corresponding start point minus the x ordinate of end point 
(i.e. xSxS es ..2 −⋅ if closest next x is Qe). Using 

interpolation we find the y ordinate of this point. 
 

6. Experimental Evaluation 
 

We implemented the proposed distance operators by 
incorporating them as query functionality to a TD engine 
[22], [23]. In the sequel, we describe the datasets and then 
we present the experimental results evaluating our 
techniques. 

 
6.1. Datasets 

 
While several real spatial datasets are around for 

experimental purposes, this is not true for the TD domain. 
Nevertheless, in this paper, we have used a real-world 
dataset for experimentation purposes, namely a fleet of 
trucks available in [25]. The dataset, illustrated in Figure 
6a, consists of 276 trajectories. From this original dataset 
we exported a subset of 20 trajectories belonging to two 
distinct clusters, with the first 10 following an 
E�N�W�S pattern and the rest following a N�E 
pattern (the lower and the upper set, respectively, 
illustrated in Figure 6b). The semi-automatic procedure 
that identified the two clusters separated the work space 
into nine equal square quadrants (NW, N, NE, W, ∗, E, 
SW, S, SE) and for each one, spatial range queries were 
performed to find the objects located in each region. Inter-
relating the results of range queries, we identified the two 
clusters to be used in our experimentation. 

 

 
(a) a fleet of trucks (b) Two identified clusters 

Figure 6: Real world trajectory dataset 
 
The experimental study is not limited to real data. We 

have also used synthetic datasets generated by the GSTD 
data generator [26], by applying a Gaussian initial 
distribution, a random movement function and a Gaussian 
sampling rate. In order to generate four datasets with each 
(consisting of 20 trajectories with 123 segments per 
trajectory) heading to a different direction (N-S-W-E), the 

objects’ movement was restricted by applying different, 
non equal extents in each sampling (see Figure 7a). 

 

 
(a) N-S-W-E datasets (b) GSTD with noise 

Figure 7: GSTD synthetic trajectory datasets 
 
Furthermore, we have produced a series of datasets by 

adding different percentages of noise at every sequence of 
the (S, N, W, E) dataset randomly at the 1/3 of its points. 
The noise was added using the formula 

srangeValuerandnxxnoise *+=  in the S and N datasets, 

and srangeValuerandnyynoise *+=  in the E and W 

datasets, where randn produces a random number chosen 
from a normal distribution with mean 0 and variance (0.05 
– 0.50), and rangeValues is the range of values on X or Y 
coordinates. Figure 7b illustrates two trajectories included 
in the W20 and S20 datasets (i.e., W and S datasets with 
20% noise). 

 
6.2. GenLIP Accuracy Experiments 

 
In this section we present experimental results 

regarding the accuracy of our techniques in classification 
and clustering tasks. The first experiment was performed 
using the synthetic N-S-W-E datasets and tried to classify 
routes according to their LIP distance following a 
methodology initially introduced by Keogh et al. [16]. In 
this technique, each route is assigned a class label. Then 
the leave-one-out prediction mechanism is applied to each 
route in turn. That is, the class label of the chosen route is 
predicted to be the class label of its nearest neighbor, 
defined based on the given distance. If the prediction is 
correct, then it is a hit; otherwise, it is a miss. The 
classification error rate is defined as the ratio of the 
number of misses to the total number of routes. In this 
experiment, where we are only interested in spatial 
similarity, these four datasets form two clusters, one 
consisting of the N, S datasets (vertical movement) and the 
other of the W and E datasets (horizontal movement in 
Figure 7a). We apply the leave-one-out prediction 
mechanism based on the GenLIP distance operator for 
each one of the 80 routes and the accuracy of our approach 
was absolute. In the sequel, we repeat the same experiment 
several times but each time utilizing the datasets having 
noise Ni, Si, Wi and Ei with i = 5, 10, …, 50. The general 



idea is to try to confuse GenLIP by interleaving routes with 
noise that introduce larger polygons and more bad 
segments than the initial. The GenLIP distance function 
turns out to be robust enough since it present zero misses 
up to noise > 25%. Even with more noise the average 
classification error rate is less than 10 / 80 = 12.5%. 

Observing the outcome distances in the previous 
experiment we noticed that as the noise increases the NN 
may not yield a misclassification but the k-NN have a few 
misses. So as to stress our evaluation and in order to assess 
the inter-cluster quality we followed the subsequent 
evaluation procedure. For each route in any of the two 
clusters we apply (k−1)-NN (k is the number of the routes 
in each cluster) queries, and we sum all the correct 
classifications inside the k−1 nearest neighbors. The 
overall accuracy is defined as the ratio of the number of 
correct classifications over the total number tests. We 
further weight the position of each miss in the range of the 
k−1 neighbors. Applying this procedure to the distances 
computed previously, we get the results illustrated in 
Figure 8. 
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Figure 8: Accuracy of GenLIP against noise 

 
The main conclusion that can be extracted from this 

chart is that accuracy lowers as the noise increases (which 
is straightforward) but even for high noise it remains at 
high levels (accuracy higher than 0.6 for noise up to 50%). 

 
6.3. Experiments on Spatiotemporal Similarity 
 

To demonstrate the STLIP distance operator we 
conducted experiments using the Trucks dataset. We chose 
randomly 10 trajectories from the dataset, which were 
compressed using the TD-TR algorithm described in [20] 
producing similar but not identical artificial trajectories. 
We applied the TD-TR compression technique with 
parameter values of p from 0.1% to 1% of the length of 
each trajectory (i.e. such parameters values correspond to 
hundred of meters in our application scenario). The aim 
was to achieve different values of distance, since 
increasing TD-TR p parameter produces compressed 
trajectories with fewer sampled points, while the general 
sketch of the trajectory remains unaffected. To evaluate 

this, we formed a 10 cluster data set with 3 trajectories per 
cluster. We got all possible pairs of clusters and we 
partitioned them into two clusters applying an 
agglomerative hierarchical clustering algorithm with the 
complete linkage criterion (using the CLUTO tool [11]. 
We sketched the dendrogram of each clustered result to 
evaluate whether it correctly partitions the trajectories. 
Figure 9 depicts a correct and a erroneous clustering. 
STLIP managed to perform very well as it clustered 
correctly 37 out of the 45 cluster pairs. 

 
 

Figure 9: Examples of correct (left) and erroneous (right) 
clusterings 

 
6.4. Experiments on Directional Similarity 

 
The purpose of the experiment that follows is to use the 

synthetic N-S-W-E datasets and try to classify routes 
according to their directional similarity DSIM. In this case 
where direction of routes is of interest, each dataset 
corresponds to a distinct cluster. For each of the six 
different pairs of clusters we apply the inter-cluster 
evaluation procedure and the results are illustrated in 
Figure 10. Considering the fact that the datasets include 
routes with quite different lengths and that our approach 
penalizes moving points with diverging extents the results 
are satisfactory. What is more, we remind that one of the 
orientations of our techniques is not only to define global 
operators but to additionally expose local properties. 
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Figure 10: Demonstrating DSIM 

 

7. Conclusions and Future Work 
 

In this paper, we proposed novel distance operators, to 
address the trajectory similarity search problem that may 
straightforwardly support knowledge discovery in TD. 
Clear future work objectives arise from this work. More 



specifically, we plan to devise appropriate indexing 
structures in order to improve overall performance of the 
operators, while further qualitative evaluation of the 
operators will be a parallel task. Finally, we plan to study 
thoroughly the quality of LIPgrams and utilize these 
similarity meta-data patterns so as to perform other mining 
tasks, like finding most frequent motion patterns. 
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