
Mining Trajectory Databases via a Suite of Distance Operators

Nikos Pelekis
1
 Ioannis Kopanakis

2
 Irene Ntoutsi

1
 Gerasimos Marketos

1
 Yannis Theodoridis

1,3

1
Dept. of Informatics, Univ. of Piraeus, Greece

{npelekis, ntoutsi, marketos, ytheod}@unipi.gr
2
Technological Educational Institute of Crete, Greece

i.kopanakis@emark.teicrete.gr
3
Research Academic Computer Technology Institute

 ytheod@cti.gr

Abstract

With the rapid progress of mobile devices and

positioning technologies, Trajectory Databases (TD) have

been in the core of database research during the last

decade. Analysis and knowledge discovery in TD is an

emerging field which has recently gained great interest.

Extracting knowledge from TD using certain types of

mining techniques, such as clustering and classification,

impose that there is a mean to quantify the distance

between two trajectories. Having as a main objective the

support of effective similarity query processing, existing

approaches utilize generic distance metrics that ignore the

peculiarities of the trajectories as complex spatio-

temporal data types. In this paper, we define a novel set of

trajectory distance operators based on primitive (space

and time) as well as derived parameters of trajectories

(speed and direction). Aiming at providing a powerful

toolkit for analysts who require producing distance

matrices with different semantics as input to mining tasks,

we develop algorithms for each of the proposed operators.

The efficiency of our approach is evaluated through an

experimental study on classification and clustering tasks

using synthetic and real trajectory datasets.

1. Introduction

A Trajectory Database (TD) consists of objects whose
location changes over time (e.g. moving humans or
vehicles). With the integration of wireless communications
and positioning technologies, the concept of TD has
become increasingly important, and has posed great
challenges to the data mining community [14]. In this
work, we initially study the problem of trajectory similarity
search in TD, where, given the trajectories of two moving
objects (i.e., the sequence of their locations with respect to

time), we detect and quantify their (dis-)similarity, hence
their distance. Having in hand a powerful set of distance
operators, each of them describing semantically different
interrelation properties between trajectories, we investigate
their utilization in clustering and classification tasks, which
fundamentally rely on the notion of distance among the
data under analysis.

The support of efficient trajectory similarity techniques
is indisputably very important for the quality of data
analysis tasks in TD. This justifies the fact that during the
last decade there has been a lot of work in the literature
regarding trajectory similarity search. Most of the existing
approaches so far are mainly inspired by the time series
analysis domain and propose generic similarity metrics for
1D data [2], [17], [6]. Other approaches deal with some
basic trajectory features [28], [29], [33], [9], [10], such as
the different sampling rates on trajectories, the different
speeds of moving objects, the possible outliers that might
be introduced due to an anomaly in data collection
procedure, the different scaling factors, the different
trajectory lengths, etc. The common characteristic of
previous works is that they are interested in the movement
shape of the trajectories, which are usually considered as
2D or 3D time series data. In other words, what is
important in measuring the similarity between two
trajectories is just the sequences of the sampled positions.
This means that the temporal dimension is ignored, leaving
the time recordings out of the knowledge discovery
process. In real world applications though, trajectories are
represented by finite sequences of time-referenced
locations. What is more, such sequences may result from
time-based (e.g. every 30 seconds), change-based (e.g.
when the location of an entity deviates from the previous
one by a given threshold), location-based (e.g. when a
moving object is close to a sensor), event-based recording
(e.g. when a user requests for localization), or even various
combinations of these basic approaches [1]. A different
perspective is required therefore, capable of coping with

real world application scenarios. In addition to the above,
TD introduce issues related with derived parameters of
motion, such as speed and direction.

To the best of our knowledge, there is no work on
classifying the different similarity types that can be defined
based on these underlying features of the trajectories. In
this paper, we provide such a classification and propose
novel distance operators, which can be exploited by
mining procedures intrinsically requiring distance
information. Our approach takes under consideration all
the factors that characterize a trajectory (locality,
temporality, directionality, rate of change) and formulates
a flexible framework for the comparison of trajectories
based on the above factors. Furthermore, the incremental
and partial nature of the defined distance operators makes
them capable of comparing trajectories partially,
identifying similarities even in portions of their route. This
is in contrast to other approaches that only define global
metrics for the whole lifespan of the trajectories. As a
motivating example, consider a location-based data
management system, which monitors the movement of
GPS-equipped moving objects; public transport means,
animals under supervision or humans (walkers or drivers)
could be real world examples. Experts in the field would
be advantaged if they could run analysis tasks, such as:
• Task 1 – spatiotemporal similarity: Find clusters of

objects that follow similar routes (i.e., projections of
trajectories on 2D plane) during the same time interval
(e.g. co-location and co-existence from 3pm to 6 pm)
and

• Task 2 – (time-relaxed) spatial-only similarity: Find
clusters of moving objects taking only their route into
consideration (i.e., irrespective of time, direction and
sampling rate).

and variations of the above, such as:
• Task 3 – speed-pattern based spatial similarity: Find

clusters of objects that follow similar routes and,
additionally, move with a similar speed pattern, and

• Task 4 – directional similarity: Find clusters of
objects that follow a given direction pattern (e.g. NE
during the first half of the route and subsequently W).

Since our framework is based on query processing
operators, the novelty of our approach is augmented by the
following two inter-related facts: (1) the combination of
the tasks (using AND/OR clauses) provides analysis
functionality unmatched so far (e.g. “find trajectories that
moved closely in space but following opposite directions
and with very dissimilar speed”); (2) the output of each of
the supported operators defines similarity patterns that can
be utilized to reveal local similarity features (e.g. “find the
most similar portions between two dissimilar trajectories”).

The major contributions of this paper are the following:
• We define two main types of trajectory similarity

search, spatiotemporal and (temporally-relaxed)

spatial similarity, as well as two variations, speed-
pattern based spatial and directional similarity.

• For each type of similarity query we introduce
distance operators, and we propose respective query
processing algorithms.

• We demonstrate how these algorithms implicitly
define similarity patterns to expose stratified
commonalities, wherein portions of trajectories that
are similar to each other may be detected.

• We conduct a comprehensive set of experiments over
synthetic and real trajectory datasets, in order to
thoroughly evaluate our approach supporting
classification and clustering tasks.

The rest of the paper is structured as follows: Problem
statement and related work are discussed in Section 2. In
Sections 3, 4 and 5, we describe in detail the different
types of similarity search (spatial, spatiotemporal and
variations, respectively) and respective search algorithms.
In Section 6, we present the results of our experimental
study. Section 7 concludes the paper and provides ideas
for future work.

2. Problem Statement and Related Work

Before we define the different types of similarity search
addressed in this paper, we first present the notations
utilized hereafter. Let D be a database of N moving objects
with object ids {o1, o2, …, oN}. Assuming linear
interpolation between sampled locations, the trajectory Ti
of a moving object oi consists of a set of 3D Line
Segments (3DLS), where each 3DLS represents the
continuous development of the moving object during
sampled locations. In other words, the movement of an
object from a starting position (xs, ys) to an ending position
(xe, ye) during a time period [ts, te] is described by a linear
function of time fi(t). Projecting Ti on the spatial 2D plane
(temporal 1D line), we get the route ri (the lifespan li) of
oi. Moreover, additional motion parameters can be derived
by fi(t), including speed s, direction angle φ, etc.
Obviously, no assumptions of equal distanced time
intervals between the sampled points are posed.

Definition 1: Let D be a database of trajectories Ti and
Q be a (reference) trajectory consisting of a set of 3DLS.
The Most-Similar-Trajectory (MST) S in D with respect to
Q is the one that minimizes a distance measure Dist(Q,Ti).

The distance measure Dist(Q,Ti) is application-driven
and may involve any combination of trajectory features,
such as spatial projection (route), temporal projection
(lifespan), speed and direction. Taking both route and
lifespan into consideration, Dist(Q,Ti) addresses Task 1
presented in Section 1; considering only route Task 2 is
addressed, and so on.

Route, lifespan, speed and direction of a moving object
trajectory are classified as motion dependant parameters.
There also exist data dependant parameters that affect
similarity search, such as length, scale, shift, sampling rate
and outliers’ existence, which have been the main research
issues in related work. In this paper, we focus on the
former class of parameters, as we treat the problem from a
TD perspective.

Most of related work in trajectory similarity search is
inspired by the time series analysis domain, based on
mapping a trajectory into a vector in a feature space and
using an Lp-norm distance function to define the similarity
measure. The advantage of this approach is that it exploits
on a dimensionality reduction technique, which allows the
similarity between the trajectory vectors in the time
domain to be approximately equal to the similarity
between the two points in the feature domain.

Agrawal et al. [2] adopt the Discrete Fourier
Transformation (DFT) to be the feature extraction
technique since DFT preserves the Euclidean distance and,
furthermore, only the first few frequencies are important.
Rafiei and Mendelzon [24] use Fourier descriptors to
represent shapes boundaries, compute a fingerprint for
each shape and build a multidimensional index (R-tree) on
fingerprints. The distance between two shapes is
approximated by the distance of the corresponding
fingerprints. This distance is not affected by variations in
location, size, rotation and starting point.

Although Euclidean measures are easy to compute, they
do not allow for different baselines or different scales. The
main drawback of these methods is that their performance
degrades in the presence of noise and outliers since all
elements should be matched. To address the disadvantages
of the Lp-norm, Goldin and Kanellakis [15] use
normalization transformations, i.e., they normalize
sequences and compute the similarity between normalized
sequences. Although this method solves some problems
like the different baselines, it is still sensitive to phase
shifts in time and does not allow for acceleration along the
time axis. Lee et al. [18] compute the distance between two
multidimensional sequences by finding the distance
between minimum bounding rectangles. Two approaches,
which also use Euclidean distances, include the lower
bound techniques [5] and the shape-based similarity query
[30]. However, both approaches can be applied only on
trajectories with same lengths.

Another approach is based on Dynamic Time Warping
(DTW) technique that allows stretching in time in order to
get a better distance [3]. DTW has been adopted in order
to measure distances between two trajectories that have
been represented as path and speed curves [19] or as
sequences of angle and arc-length pairs [27]. Sakurai et al.
[31] present the Fast search method for Dynamic Time
Warping, utilizing a new lower bounding distance measure

that approximates the time warping distance. Lin and Su
[32] introduce the “One Way Distance” (OWD) function
and they prove that their approach outperforms DTW
algorithm as far as precision and performance is
concerned. The DTW similarity measure suffers from
shortcomings such as sensitivity to different baselines and
scales of the sequences that can be reduced by first
normalizing the sequences.

Several approaches use the Longest Common Sub
Sequence (LCSS) similarity measure [4]. The basic idea is
to match some sequences by allowing some elements to be
unmatched. The advantage of the LCSS method is that it
allows outliers, different scaling functions, and variable
sampling rates. Vlachos et al. [29] use the LCSS model to
define similarity measures for trajectories. The LCSS
model is extended by considering a set of translations and
finding the translation that yields the optimal solution to
the LCSS problem. Based on the LCSS definition for
trajectories, the authors propose two measures, which
allow time stretching and translations, respectively. An
index structure is also presented, which is based on
hierarchical clustering. The use of LCSS in trajectory
similarity proposed in [29] has the drawback that it
penalizes the points that were marginally outside the
matching region by assigning to them a similarity value of
zero. To deal with this problem authors propose a non-
metric distance function based on the LCSS in conjunction
with a sigmoid matching function [28].

In order to overcome the inefficiency of the previously
described methods in the presence of noise or obstacles,
Chen et al. [10] recently proposed a new distance function
called Edit Distance on Real sequences (EDR), based on
the Edit Distance (ED) widely used in bio-informatics and
speech recognition to measure the similarity between two
strings. Their extensive experimental evaluation shows that
the proposed distance function is more robust than the
Euclidean distance, the DTW and ERP [9] and more
accurate than LCSS, especially when dealing with
trajectories having Gaussian noise.

Recently, Frentzos et al. [13] proposed a similarity
metric (and an approximation method to reduce its
calculation cost) in order to support MST search by
utilizing R-tree-based trajectory indexing structures.

As previously mentioned, in this paper we follow a
different approach by providing a classification of various
types of distance operators, each one of them extracting
valuable similarity properties based on motion dependant
parameters, as such, forming a powerful framework for TD
analysis tasks.

3. (Time-relaxed) Spatial Trajectory

Similarity Search

In this section and before we define the spatiotemporal

similarity between trajectories, we tackle the problem of
measuring the spatial similarity of two moving objects as
an intermediate step towards the general case. To this
effect, we propose a novel distance operator, called
Locality In-between Polylines (LIP). Intuitively, two
moving objects are considered spatially similar when they
move close (i.e. their routes approximate each other) at the
same place irrespective of time and direction. As such, LIP
defines a distance function upon the (projected on the
Cartesian plane) routes of the trajectories. The idea is to
calculate the area of the shape formed by two 2D
polylines, which are the outcome of the above projection
(see Figure 1). Formally:

Definition 2: The Locality In-between Polylines (LIP)
distance between two trajectories Q and S is defined as
follows:

∑
∀

⋅=
i polygon

ii wAreaSQLIP),(
(1)

where polygoni is a member of the set of polygons
formulated between intersection points (I1, I2, … In)
created by the overlay of Q and S in 2D plane.

An example of the routes of two trajectories Q and S
and the respective areas that contribute in LIP(Q,S) is
illustrated in Figure 1.

Y

X

Si Q1

S1

Sn

Qi

Qn

I1

I2

Ii+1

Area1

Areai Ii Ii -1

Figure 1: Locality In-between 2D Polylines

Each polygon area is biased by a contribution (weight),

which is defined as follows:
Definition 3: Let LengthQ(Ii, Ii+1) and LengthS(Ii, Ii+1)

be the lengths of the portions of Q and S that participate in
the construction of polygoni. The contribution []1,0∈iw of

polygoni in LIP(Q,S) is:

SQ

iiSiiQ

i
LengthLength

IILengthIILength
w

+

+
= ++),(),(11 (2)

Note that the numerator of the above equation is the
perimeter of the polygon in question, while the
denominator is the sum of the total length of the routes.

It is easily implied that LIP is a distance operator that
may be intuitively utilized by a user (e.g. posing a query of
the form “find similar trajectories that passed three
building blocks (<100m2) away from my route”). A
powerful feature of the LIP operator is that it does not only
provide a global measure for the similarity of two
trajectories. LIP further quantifies the distance among
portions of the trajectories. These portions are not
statically predefined. For example, the implicit output of
the LIP operator is a distance list of the form LIPgram =
{LIPgram1, …, LIPgrami, LIPgrami+1, …, LIPgramn},
where LIPgrami = (Ii, Ii+1, LIPi), is a triplet that implies the
distance LIPi between points Ii and Ii+1. It is a trivial task
therefore to perform queries upon the resulted LIPgram so
that to find parts of trajectories that diverge or converge
and, as such, to cluster subsets of the above trajectories.

The LIP distance function described so far works
correctly with pairs of trajectories whose spatial
deployment follows, on the average, a stable trend with no
dramatic rotations (e.g. like the ones illustrated in Figure
1), or if they are rotating, they do so by turning similarly
during their motion (Figure 2a). In the case, for example,
where S starts rotating clockwise and Q counterclockwise
then the resulting polygons of the LIP algorithm will be
self-intersected (non-simple polygons) and, as an outcome
the distance measure may be meaningless or even
indefinite (Figure 2b). To deal with this issue we provide
the following mechanism that makes LIP operator
universal in utilization: During traversing polylines Q and
S and constructing polygons polygoni, we identify the so-
called bad segments that violate the simplicity property of
the under-construction polygons, as they exhibit diverging
rotation in contrast to their coupling trajectory. When the
algorithm detects these segments, it closes the current
polygon by connecting the initial points of the bad
segments. Then, it invokes the LIP function for the already
investigated portions of the polylines that for sure result to
simple polygons, and recursively restarts itself with the
remaining portions of the initial polylines as parameters.

Y

X

S
Q

Si

Qi

Se

Qe

(a)

Y

X

S

Q

Qe

Qi

Si

Se

(b)
Figure 2: Exceptional cases for LIP operator

Let us now define a simple yet effective criterion that

categorizes a pair of segments (Si ∈ S, Qi ∈ Q) as either
good or bad. This condition requires that the segment
implied between the ending points of the currently

investigated segments does not cross any of the previous
segments of Q and S. This is a strict requirement that may
lead searching backwards till the beginning of the
polylines. Actually, this is not necessary as the effect of the
bad segments is local and can be treated by testing just a
small number of segments for intersection. To this line, the
algorithm GenLIP, illustrated in Figure 3, searches for bad
segments and acts as a driver for the invocation of the LIP
distance operator.
Algorithm GenLIP(Q polyline, S polyline, p int)

1. WHILE q < Q.LAST AND s < S.LAST

2. IF intersect(Qq, Ss) THEN

3. Mark Qq,Ss as ‘good’ & add them to Q’,S’

4. ELSIF NOT Bad(Q’, S’, Qq, Ss) THEN

5. Mark Qq,Ss as ‘good’ & add them to Q’,S’

6. ELSE

7. Qq, Ss are marked as ‘bad’

8. FOR k=1 to p

9. Give p chances to repair LIP criterion

10. NEXT

11. IF repairing attempt succeeded THEN

12. GOTO line 1 with policy-dependant q,s

13. ELSE

14. Recover from attempt and GOTO line 17

15. END IF

16. NEXT

17. result = result + LIP(Q’, S’)

18. Q = Q – Q’

19. S = S – S’

20. RETURN result + GenLIP(Q, S, p)

Figure 3: GenLIP Algorithm

More specifically, the algorithm begins traversing the

segments of Q and S until the last segment of either Q or S
is reached (line 1). At each step it checks whether the two
segments are intersected (line 2). Since intersection is an
indicator of proximity, the two segments are marked as
good and are added as tails to two polylines Q’ and S’,
representing the certified portions of Q and S, respectively,
that fulfill the aforementioned requirement. The same
happens when the test whether the inclusion of the
currently investigated segments to Q’ and S’ characterizes
them as bad, is negative. In the positive case, these
segments are marked as bad and subsequently, a chance is
given to the next p segments to repair the failure of the LIP
criterion. If we succeed to find good segments in the
following p segments then these are marked and added (as
all of the intermediate bad segments are) to Q’ and S’ and
the procedure continues in the same way (lines 11-12). If
we fail then the procedure first recovers from the previous
repairing attempt, and secondly stops the procedure,
invokes the LIP operator for Q’ and S’, and recursively
calls the GenLIP for the rest of the initial polylines.

Y

X

Q2
Q3

Q4

Q5

S1
S2

S3

S4

Q6

S5

Q1

S6

Figure 4: Demonstration of good and bad segments

To demonstrate the previous discussion, Figure 4

illustrates the routes of two trajectories Q and S for which
the GenLIP procedure identifies (S4, Q4) as a pair of bad
segments. If no repairing attempt is performed then the LIP
distance function will be initially applied for Q’ = {Q1, Q2,
Q3} and S’ = {S1, S2, S3}. On the other hand, if a look-
forward repairing attempt is applied (e.g. p=2) then LIP
will be applied for Q’ = {Q1, Q2, Q3, Q4, Q5, Q6} and S’ =
{S1, S2, S3, S4, S5, S6}.

4. (Time-aware) Spatiotemporal Trajectory

Similarity Search

The LIP distance operator does not include the notion
of time as it just compares the projections of moving
objects to the Cartesian plane. In this section, we propose a
novel distance operator, called Spatiotemporal LIP
(STLIP), to tackle the problem of measuring the spatio-
temporal similarity between two trajectories. Intuitively,
two moving objects are considered similar in both space
and time when they move close concurrently at the same
place. The idea is to utilize LIP and define STLIP as a
multiple of LIP. In other words, STLIP is calculated by
multiplying LIP by a factor having values greater than 1,
implying the temporal distance of the corresponding LIP.

Definition 4: The Spatiotemporal LIP distance
(STLIP) between two trajectories Q and S is defined as
follows:

∑
∀

=
i polygon

iSTLIPkSQSTLIP),,,(δ
(3)

where STLIPi for polygoni is defined as:

() 0k where,1 ≥⋅+⋅= iii TLIPkLIPSTLIP .

(4)

Temporal LIP (TLIP) is a measure modeling the local
temporal distance and participates to the STLIP measure
by a penalty factor k which represents user’s assigned
importance to the time-factor.

In order to define the local temporal distance TLIPi and
associate it with the corresponding LIPi implicitly
introduced by the polygons we need to find the timepoints

when Q and S cross each other. Let Qt_Ii be the timepoint
when Q passes from intersection point Ii and Qt_Ii+1 be the
timepoint when Q reaches the next intersection point Ii+1.
Respectively, St_Ii and St_Ii+1 are the corresponding
timepoints for S. These pairs of timepoints define the
periods that each point needs to traverse its route from one
intersection to the other. Let Qpi = [Qt_Ii, Qt_Ii+1) and Spi

= [St_Ii, St_Ii+1) be these periods. Having this in mind, we
define MDI as the maximum duration of the temporal
element (the list of time periods, each one representing the
lifespan of a particular section of the motion) that is the
outcome of the intersection between Qpi and one of the
following three alternatives: a) S’s temporal projection
(Spi), b) Spi stretched towards future by a temporal interval
δ (Spi+δ), c) S’s temporal projection stretched to the past
by δ (Spi-δ). To this end, we define the temporal similarity
for this LIPi as formulated in Eq.5.

SQ

i
i

DurationDuration

MDI
TLIP

+
−=

)(
21

δ (5)

MDI has been incorporated in order to support almost
concurrent movements. This happens by introducing the
parameter δ, a time window (tolerance in the past as well
as in the future) in which two trajectories, though not
moving concurrently, are considered temporally close.

In terms of implementation, STLIP works in the same
fashion as LIP does. First, Q and S are projected to the
temporal domain to get their lifespans. Subsequently, the
intersection of the two lifespans is found and, then, the
original trajectories are restricted according to this
common temporal element and projected on the spatial 2D
plane so as to find the polylines upon which GenLIP will
be applied.

5. Variations

Expanding our framework, in this section we describe
two variations of the previously presented operators. These
variations enhance our distance functions by taking into
consideration the rate of change (i.e. speed, acceleration)
and directional (i.e. turn) characteristics of the trajectories.

5.1. Speed-pattern based Similarity Search

In order to support the first variation, we introduce a
new distance operator, called Speed-Pattern STLIP
(SPSTLIP), to measure the distance between two
trajectories that move with similar speed pattern relaxing
either space or time features. Two interesting scenarios,
which also find realistic applications, are the following:
• 1

st
 scenario: We are not interested in time dimension;

what we know about Q and S is their speed v at
different segments seg in their route. In this case, the
problem is to find the similarity between Q = {(segQ,1,

vQ,1), …(segQ,n, vQ,n)} and S = {(segS,1, vS,1), …(segS,n,
vS,n)}.

• 2
nd

 scenario: We are not interested in space dimension;
what we know about Q and S is their speed v at
different periodes of time per. The problem here is to
find the similarity between Q = {(perQ,1, vQ,1),
…(perQ,n, vQ,n)} and S = {(perS,1, vS,1), …(perS,n, vS,n)}.

These two scenarios are special cases of finding the
similarity between two 1D time series and there are well-
known methods to perform such tasks. What is more, the
above cases imply that the points are moving with constant
speed, which is the case of synthetic motions. Our
approach is to find similarities of points moving with
fluctuated speed and/or acceleration and may be randomly
sampled which is the realistic case.

We define SPSTLIP by multiplying STLIP with a factor
greater than 1, which is an indicator of the corresponding
Speed-Pattern distance (SPLIP). As such, there is a need to
define the local SPLIP and associate it with the
corresponding LIP, as well as the respective TLIP. We
define the local SPSTLIP for polygoni as:

() ()iiii SPLIPlTLIPkLIPSPSTLIP ⋅+⋅⋅+⋅= 11 (6)
where k, l 0≥ and

i

ii

Qp

QpQp

LQ

LSLQ
SPLIPi

−
= (7)

where
iQpLQ measures the distance traversed by Q

between two intersection points Ii and Ii+1, while
iQpLS is

the length of the section of S trajectory restricted at the
periods Qpi during which Q moves from Ii to Ii+1. Note that
if we omit the ()iTLIPk ⋅+1 factor in equation 7, the

operator becomes time-relaxed as it estimates the distance
among trajectories taking into consideration the spatial and
speed parameters, irrelevantly to their lifespans.

In order for SPLIP to vary between 0 and 1, LSQt_I
should not be greater than 2·LQQt_I. In order to enforce it,
we partition the TD into subsets according to speed, so that
the fastest moving object within each subset is at most α =
2 times the slowest. As such, for objects moving with
speed difference higher than α we consider them as non-
similar. The overall SPSTLIP between two trajectories Q
and S is defined as:

Definition 5: The Speed-Pattern Spatiotemporal LIP
distance (SPSTLIP) between two trajectories Q and S is
defined as follows:

∑
∀

=
ipolygon

iSPSTLIPlkSQSPSTLIP

),,,,(δ
(8)

In contrast to STLIP, the implementation of SPSTLIP
further needs to delimit the 3D development of S inside
Qpi and subsequently project the resulting moving point on
the spatial plane.

5.2. Directional Similarity Search

A second variation supports similarity of the form:
“Find similar trajectories according to their turns”. Based
on such kind of similarity we could further cluster
trajectories that move i.e. initially NW (during period A in
place B) and then NE (during period C in place D). We
define Direction Similarity (DSIM) between Q and S as
follows:

Definition 6: The Directional Similarity (DSIM)
between two trajectories Q and S is defined as follows:

∑
∀

=
i

i
DSIMSQDSIM

φ
φ),(

(9)

where

i
i wDSIM

i
⋅

 −
=

180

180 φ
φ (10)

is the similarity defined between two segments of Q and S
characterized by the angle φi they form.

This angle ranges from 0° (full similarity, DSIM = 1) to
180° (full dissimilarity, DSIM = 0) and is reduced by a
weight wi corresponding to the percentage of Q and S
trajectory that participate in the similarity. So, if

i
Qφ and

i
Sφ are the parts of Q and S, respectively, where φi is the

angle between them, wi is defined as:

)()(

)()(

SlengthQlength

SlengthQlength
w ii

i +

+
=

φφ
 (11)

Figure 5 depicts that the angle φi formed between two
segments of Q and S change to φi+1 whenever either Q or S
changes direction. This means that a change occurs at the
ending points of each sub-movement of Q and S.

Y

X

S

Q 1φ

1φ
Q

2φ
Q

2φ
Y

3φQ

3φ 4φ
5φ

Y

6φ

4φ
Q

5φ
Q

6φ
Q

1φS
2φS

3φS 4φS

5φS 6φS

Figure 5: Direction similarity on projected trajectories

Let us now examine how the angle between the

directions of two moving objects is calculated. First of all,
the direction of a moving object during a period where its
motion vector remains constant is the angle formed
between the xx’ axis and the line segment from the initial
i(xi, yi) to the ending point e(xe, ye), measured in degrees
(0° ≤ direction < 360°).

In order to calculate the angle between two directed
segments and scale this angle between 0° and 180° there is
a need for a small examination according to which
quadrant Q and S are moving towards. We identify sixteen
different cases. Below we examine four of them, where Q
is moving towards the 1st quadrant (0° ≤ dir(Q) < 90°) and
S is moving towards the 1st, the 2nd, the 3rd, and the 4th
quadrant, respectively.

°<≤°+−

⋅−=

−−°=

−°=

°>

°<≤°−

°<≤°−

°<≤°−

==

360)(027),())(360(

ˆ2ˆˆ

ˆˆ90ˆ

ˆ270ˆ

180ˆ

270)(018),()(

180)(09),()(

90)(0 ,)()(

) ,(ˆ

SdirifQdirSdir

if

SdirifQdirSdir

SdirifQdirSdir

SdirifSdirQdir

SQangle

o

βφφ

αφβ

φα

φ
φ

The third case is when Q and S are moving towards anti-
diametric quadrants. In this case, if the angle is greater
than 180° the angle is adjusted to the symmetric angle
formed by Q’s extended line. The remaining twelve cases
follow similar strategies.

The algorithm that implements DSIM starts traversing
the coordinates’ list of both Q and S projected polylines
until it reaches the end of one of them. Two indexes
control the access to the points’ lists. Only one of the two
indexes is advanced at each step depending on which
polyline changes its direction. At each step, the algorithm
calculates the angle formed between the segments starting
from the points currently indexed in the lists (Qs and Ss)
and ending to their subsequent (Qe and Se). This occurs
after the translation of the segment S_seg (Ss, Se) towards
segment Q_seg (Qs, Qe). The next step is to find which of
the x-ordinates of the ending points is closer, in terms of
Euclidean distance, to the point where the previous change
of direction occurred. Finding which is the closest point,
makes us aware of where the end of

i
Qφ or

i
Sφ reside. So if

the closest next x is that of Qe then the end of
i

Qφ is Q’s

next point, while the end of
i

Sφ is the projection of Qe to

the currently investigated segment of S. In such case we
advance the index of Q coordinates’ list, while we keep

i
Sφ so as we clip S_seg by

i
Sφ (bold portion of

1φS in

Figure 5) before the calculation of the next angle φi. In the
same way, if the closest next x is that of Se then the end of

i
Sφ is S’s next point, while the end point of

i
Qφ is the

projection of Se to the currently investigated segment of Q.
Similarly, this time we advance the index of S’s
coordinates list and we clip Q by

i
Qφ (bold portion of

2φQ

in Figure 5). To find the above projection points there are
two cases in proportion of whether S_seg and Q_seg are
directed towards the same or opposite half-planes defined

by the yy’ axis. In the first case, the x ordinate of the
projection point is the closest next x while in the second
case the required x ordinate is that of the doubled x of the
corresponding start point minus the x ordinate of end point
(i.e. xSxS es ..2 −⋅ if closest next x is Qe). Using

interpolation we find the y ordinate of this point.

6. Experimental Evaluation

We implemented the proposed distance operators by
incorporating them as query functionality to a TD engine
[22], [23]. In the sequel, we describe the datasets and then
we present the experimental results evaluating our
techniques.

6.1. Datasets

While several real spatial datasets are around for

experimental purposes, this is not true for the TD domain.
Nevertheless, in this paper, we have used a real-world
dataset for experimentation purposes, namely a fleet of
trucks available in [25]. The dataset, illustrated in Figure
6a, consists of 276 trajectories. From this original dataset
we exported a subset of 20 trajectories belonging to two
distinct clusters, with the first 10 following an
E�N�W�S pattern and the rest following a N�E
pattern (the lower and the upper set, respectively,
illustrated in Figure 6b). The semi-automatic procedure
that identified the two clusters separated the work space
into nine equal square quadrants (NW, N, NE, W, ∗, E,
SW, S, SE) and for each one, spatial range queries were
performed to find the objects located in each region. Inter-
relating the results of range queries, we identified the two
clusters to be used in our experimentation.

(a) a fleet of trucks (b) Two identified clusters

Figure 6: Real world trajectory dataset

The experimental study is not limited to real data. We

have also used synthetic datasets generated by the GSTD
data generator [26], by applying a Gaussian initial
distribution, a random movement function and a Gaussian
sampling rate. In order to generate four datasets with each
(consisting of 20 trajectories with 123 segments per
trajectory) heading to a different direction (N-S-W-E), the

objects’ movement was restricted by applying different,
non equal extents in each sampling (see Figure 7a).

(a) N-S-W-E datasets (b) GSTD with noise

Figure 7: GSTD synthetic trajectory datasets

Furthermore, we have produced a series of datasets by

adding different percentages of noise at every sequence of
the (S, N, W, E) dataset randomly at the 1/3 of its points.
The noise was added using the formula

srangeValuerandnxxnoise *+= in the S and N datasets,

and srangeValuerandnyynoise *+= in the E and W

datasets, where randn produces a random number chosen
from a normal distribution with mean 0 and variance (0.05
– 0.50), and rangeValues is the range of values on X or Y
coordinates. Figure 7b illustrates two trajectories included
in the W20 and S20 datasets (i.e., W and S datasets with
20% noise).

6.2. GenLIP Accuracy Experiments

In this section we present experimental results

regarding the accuracy of our techniques in classification
and clustering tasks. The first experiment was performed
using the synthetic N-S-W-E datasets and tried to classify
routes according to their LIP distance following a
methodology initially introduced by Keogh et al. [16]. In
this technique, each route is assigned a class label. Then
the leave-one-out prediction mechanism is applied to each
route in turn. That is, the class label of the chosen route is
predicted to be the class label of its nearest neighbor,
defined based on the given distance. If the prediction is
correct, then it is a hit; otherwise, it is a miss. The
classification error rate is defined as the ratio of the
number of misses to the total number of routes. In this
experiment, where we are only interested in spatial
similarity, these four datasets form two clusters, one
consisting of the N, S datasets (vertical movement) and the
other of the W and E datasets (horizontal movement in
Figure 7a). We apply the leave-one-out prediction
mechanism based on the GenLIP distance operator for
each one of the 80 routes and the accuracy of our approach
was absolute. In the sequel, we repeat the same experiment
several times but each time utilizing the datasets having
noise Ni, Si, Wi and Ei with i = 5, 10, …, 50. The general

idea is to try to confuse GenLIP by interleaving routes with
noise that introduce larger polygons and more bad
segments than the initial. The GenLIP distance function
turns out to be robust enough since it present zero misses
up to noise > 25%. Even with more noise the average
classification error rate is less than 10 / 80 = 12.5%.

Observing the outcome distances in the previous
experiment we noticed that as the noise increases the NN
may not yield a misclassification but the k-NN have a few
misses. So as to stress our evaluation and in order to assess
the inter-cluster quality we followed the subsequent
evaluation procedure. For each route in any of the two
clusters we apply (k−1)-NN (k is the number of the routes
in each cluster) queries, and we sum all the correct
classifications inside the k−1 nearest neighbors. The
overall accuracy is defined as the ratio of the number of
correct classifications over the total number tests. We
further weight the position of each miss in the range of the
k−1 neighbors. Applying this procedure to the distances
computed previously, we get the results illustrated in
Figure 8.

GenLIP

0

0,2

0,4

0,6

0,8

1

1,2

5 10 15 20 25 30 35 40 45 50

Noise

A
c
c
u

ra
c
y

GenLIP

Figure 8: Accuracy of GenLIP against noise

The main conclusion that can be extracted from this

chart is that accuracy lowers as the noise increases (which
is straightforward) but even for high noise it remains at
high levels (accuracy higher than 0.6 for noise up to 50%).

6.3. Experiments on Spatiotemporal Similarity

To demonstrate the STLIP distance operator we
conducted experiments using the Trucks dataset. We chose
randomly 10 trajectories from the dataset, which were
compressed using the TD-TR algorithm described in [20]
producing similar but not identical artificial trajectories.
We applied the TD-TR compression technique with
parameter values of p from 0.1% to 1% of the length of
each trajectory (i.e. such parameters values correspond to
hundred of meters in our application scenario). The aim
was to achieve different values of distance, since
increasing TD-TR p parameter produces compressed
trajectories with fewer sampled points, while the general
sketch of the trajectory remains unaffected. To evaluate

this, we formed a 10 cluster data set with 3 trajectories per
cluster. We got all possible pairs of clusters and we
partitioned them into two clusters applying an
agglomerative hierarchical clustering algorithm with the
complete linkage criterion (using the CLUTO tool [11].
We sketched the dendrogram of each clustered result to
evaluate whether it correctly partitions the trajectories.
Figure 9 depicts a correct and a erroneous clustering.
STLIP managed to perform very well as it clustered
correctly 37 out of the 45 cluster pairs.

Figure 9: Examples of correct (left) and erroneous (right)
clusterings

6.4. Experiments on Directional Similarity

The purpose of the experiment that follows is to use the

synthetic N-S-W-E datasets and try to classify routes
according to their directional similarity DSIM. In this case
where direction of routes is of interest, each dataset
corresponds to a distinct cluster. For each of the six
different pairs of clusters we apply the inter-cluster
evaluation procedure and the results are illustrated in
Figure 10. Considering the fact that the datasets include
routes with quite different lengths and that our approach
penalizes moving points with diverging extents the results
are satisfactory. What is more, we remind that one of the
orientations of our techniques is not only to define global
operators but to additionally expose local properties.

DSIM

0%

20%

40%

60%

80%

100%

N-S N-W N-E S-W S-E W-E

A
c
c
u

ra
c
y

Figure 10: Demonstrating DSIM

7. Conclusions and Future Work

In this paper, we proposed novel distance operators, to
address the trajectory similarity search problem that may
straightforwardly support knowledge discovery in TD.
Clear future work objectives arise from this work. More

specifically, we plan to devise appropriate indexing
structures in order to improve overall performance of the
operators, while further qualitative evaluation of the
operators will be a parallel task. Finally, we plan to study
thoroughly the quality of LIPgrams and utilize these
similarity meta-data patterns so as to perform other mining
tasks, like finding most frequent motion patterns.

8. Acknowledgements

Research partially supported by the FP6-14915
IST/FET Project GeoPKDD (Geographic Privacy-aware
Knowledge Discovery and Delivery) funded by the
European Union and the Pythagoras and Heracletos
EPEAEK II Programmes of the Greek Ministry of
National Education and Religious Affairs, co-funded by
the European Union.

9. References

[1] N. Andrienko, G. Andrienko, N. Pelekis, and S.
Spaccapietra, “Basic Concepts of Movement Data”, chapter in F.
Giannotti and D. Pedreschi (eds.) Geography, mobility and

privacy: A knowledge discovery vision, Springer, 2007, to
appear.
[2] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient
Similarity Search in Sequence Databases”, Proceedings of
FODO, 1993.
[3] J. Berndt and J. Clifford, “Finding patterns in time series: A
dynamic programming approach”, Advances in Knowledge

Discovery and Data Mining, AAAI/MIT Press, Menlo Park, CA,
1996, 229-248.
[4] B. Bollobas, G. Das, D. Gunopulos, and H. Mannila, “Time-
Series Similarity Problems and Well-Separated Geometric Sets”,
Nordic Journal of Computing, 2001.
[5] Y. Cai and R. Ng, “Indexing spatio-temporal trajectories
with Chebyshev polynomials”, Proceedings of ACM SIGMOD,
2004.
[6] K.P. Chan and A.W-C Fu, “Efficient time series matching by
Wavelets”, Proceedings of ICDE, 1999.
[7] T.M. Chan, “A Simple Trapezoid Sweep Algorithm for
Reporting Red/Blue Segment Intersections”, Proceedings of
CCCG, 1994.
[8] B. Chazelle and H. Edelsbrunner, “An Optimal Algorithm for
Intersecting Line Segments in the Plane”, Journal of the ACM,
39, 1 (2002), 1-54.
[9] L. Chen and R. Ng, “On the marriage of edit distance and
Lp norms”, Proceedings of VLDB, 2004.
[10] L. Chen, M. Tamer Özsu, and V. Oria, “Robust and Fast
Similarity Search for Moving Object Trajectories”, Proceedings
of ACM SIGMOD, 2005.
[11] CLUTO - Family of Data Clustering Software Tools,
http://glaros.dtc.umn.edu/gkhome/views/cluto (URL valid on
December 6, 2006).
[12] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos,
“Fast Subsequence Matching in Time-Series Databases”,
Proceedings of ACM SIGMOD, 1994.

[13] E. Frentzos, K. Gratsias, and Y. Theodoridis, “Indexed-
based Most Similar Trajectory Search”, Proceedings of ICDE,
2007.
[14] GeoPKDD Geographic Privacy-aware Knowledge
Discovery, www.geopkdd.eu (URL valid on December 6, 2006).
[15] Q. Goldin and C. Kanellakis, “On Similarity Queries for
Time-Series Data: Constraint Specification and Implementation”,
Proceedings of CP, 1995.
[16] E. Keogh and S. Kasetty “On the need for time series data
mining benchmarks: a survey and empirical demonstration”.
Proceedings of SIGKDD, 2002.
[17] F. Korn, H. Jagadish, and C. Faloutsos, “Efficiently
Supporting Ad hoc Queries in Large Datasets of Time
Sequences”, Proceedings of ACM SIGMOD, 1997.
[18] S.-L. Lee, S.-J. Chun, D.-H. Kim, J.-H. Lee, and C.-W.
Chung, “Similarity Search for Multidimensional Data
Sequences”, Proceedings of ICDE, 2000.
[19] J. L. Little and Z. Gu, “Video retrieval by spatial and
temporal structure of trajectories”, Proceedings of SPIE, 2001.
[20] N. Meratnia and R.A. de By, “Spatiotemporal Compression
Techniques for Moving Point Objects”, Proceedings of EDBT,
2004.
[21] D. Papadopoulos, G. Kollios, D. Gunopulos, and V.J.
Tsotras, “Indexing Mobile Objects on the Plane”, Proceedings of
MDDS, 2002.
[22] N. Pelekis and Y. Theodoridis, “Boosting Location-Based
Services with a Moving Object Database Engine”, Proceedings
of MobiDE, 2006.
[23] N. Pelekis, Y. Theodoridis, S. Vosinakis, and T.
Panayiotopoulos, “Hermes - A Framework for Location-Based
Data Management”, Proceedings of EDBT, 2006.
[24] D. Rafiei and A. Mendelzon, “Efficient Retrieval of
Similar Shapes”, VLDB Journal, 11, 1 (2002), 17-27.
[25] Y. Theodoridis, “R-tree Portal”, www.rtreeportal.org
(URL valid on December 6, 2006).
[26] Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento, “On
the Generation of Spatio-temporal Datasets”, Proceedings of
SSD, 1999.
[27] M. Vlachos, D. Gunopulos, and G. Das, “Rotation
Invariant Distance Measures for Trajectories”, Proceedings of
SIGKDD, 2002.
[28] M. Vlachos, D. Gunopulos, and G. Kollios, “Robust
Similarity Measures for Mobile Object Trajectories”,
Proceedings of MDDS, 2002.
[29] M. Vlachos, G. Kollios, and D. Gunopulos, “Discovering
Similar Multidimensional Trajectories”, Proceedings of ICDE,
2002.
[30] Y. Yanagisawa, J. Akahani, and T. Satoh, “Shape-Based
Similarity Query for Trajectory of mobile Objects’, Proceedings
of MDM, 2003.
[31] Y. Sakurai, M. Yoshikawa, and C. Faloutsos, “FTW: Fast
Similarity Search under the Time Warping Distance”,
Proceedings of PODS, 2005.
[32] B. Lin, and J. Su, “Shapes Based Trajectory Queries for
Moving Objects”, Proceedings of ACM GIS, 2005.
[33] B-K Yi, H. Jagadish, and C. Faloutsos, “Efficient Retrieval
of Similar Time Sequences under Time Warping”. Proceedings
of ICDE, 1998.

