Pattern Management

Irene Ntoutsi, Yannis Theodoridis

Information Systems Lab
Department of Informatics
University of Piraeus
Hellas

Technical Report Series
UNIPI-ISL-TR-2007-01

March 2007

Pattern Management*

Irene Ntoutsi and Yannis Theodoridis
Department of Informatics,
University of Piraeus, Greece
{ntoutsi,ythed }Qunipi.gr

Abstract

The need for pattern management has become compulsory nowadays
due to the spreading of the data mining technology as a result of the in-
formation flood. This need has been recognized by both academic and
industrial parts resulting in a number of approaches towards efficient pat-
tern management. In this chapter we review the work performed so far
in the area of pattern management and outline open research directions
regarding complete pattern management.

1 Introduction

Nowadays a huge quantity of raw data is collected from different application
domains (business, science, telecommunication, health care systems etc.). Also,
the World Wide Web overwhelms us with information. According to a recent
survey [19] the world produces between 1 and 2 exabytes of unique informa-
tion per year, which is roughly 250 megabytes for every man, woman, and child
on earth. Due to their quantity and complexity, it is impossible for humans
to thoroughly investigate these data collections directly. Knowledge Discovery
in Databases (KDD) and Data Mining provides a solution to this problem by
generating compact and rich in semantics representations of raw data, called
patterns [22]. Patterns are compact representations of raw data since they pro-
vide a high level description of raw data characteristics. Patterns are also rich
in semantics since they reveal new knowledge hidden in the huge amount of raw
data. Clusters, decision trees, association rules and frequent itemsets are some
of the most well known patterns produced by Data Mining applications.

Due to the spreading of the Data Mining technology nowadays, as a result of
the data flood, even the amount of patterns extracted from heterogeneous data
sources is huge and, quite often, non—-manageable by humans. Thus, there is a
need for efficient pattern management including issues like modeling, storage,

*This research is partially supported by the Greek Ministry of Education and the European
Union under a grant of the “Heracletos” EPEAEK II Programme (2003-07).
IPart of this work has been presented at the tutorial “Mining the Volatile Web” [23]

retrieval and manipulation of patterns. However, the majority of work in the
data mining area mainly focus on efficient mining, putting aside the pattern
management problem which only lately has began to gain more attention by
both scientific and industrial parts. In the next sections we will review the
work performed so far in the area of pattern management pointing out their
advantages and disadvantages.

2 Current pattern management approaches

The need for pattern management has been recognized by both scientific and
industrial parts and as a result several pattern management approaches have
been proposed [10] in the literature. Among them, scientific community efforts
try to deal with all the aspects of the pattern management problem including
both representation and manipulation issues. Examples of this category are the
inductive databases approach [15, 1], the 3-Worlds model [17] and the PANDA
project approach [22, 8, 24].

On the other side, industrial approaches mainly focus on pattern represen-
tation and storage aiming at easy interchange of patterns between different
vendors applications. Examples of this category include both specifications and
standards like the Predictive Markup Language Model (PMML) [13], the Com-
mon Warehouse Metamodel [2], the SQL/MM Part 6 for Data Mining [4] and
the Java Data Mining API (JDM API) [5] as well as extensions of existing com-
mercial DBMS systems like Oracle 10g Data Mining [7], Microsoft SQL Server
2005 Analysis Manager [6] and IBM DB2 Intelligent Miner [3].

In the next sections we will review the approaches proposed so far taking
into account the following aspects [10]:

the chosen architecture with respect to the raw data
— integrated, if patterns and data are stored together
— independent, if patterns are stored independently of raw data

e the adopted pattern model, i.e. what pattern characteristics are sup-
ported by the model

e the capabilities of the proposed pattern languages, i.e. what operations
are supported by the language

— pattern operations that refer exclusively to patterns
— cross over operations that relate patterns to raw data

e the support for temporal management of patterns. Since raw data
from which patterns are extracted are usually dynamic, patterns are also
dynamic, i.e. they are associated with some temporal notion. Considering
the temporal notion of patterns results in a variety of applications, like
monitoring, synchronization with respect to the underlying raw data space
etc.

3 Scientific approaches

Scientific approaches try to provide an overall solution to the pattern manage-
ment problem, providing both representation/ storage and retrieval/ manipula-
tion capabilities. In the next sub—sections we will present in more detail three
of these approaches, namely inductive databases, 3—Worlds model and PANDA
model.

3.1 Inductive databases

The inductive databases framework, introduced by Imielinski and Manilla in
1996 [15], is inspired by the idea that the data mining process should be sup-
ported by the database technology. Thus why this approach relies on an in-
tegrated architecture where both data and patterns are stored together in the
same repository.

Within the inductive databases framework the KDD process is considered
as a kind of extended query processing in which users can query both data and
patterns to gain insight about the data. To this aim a so—called inductive query
language is used. An inductive query language is an extension of a database
language that allows one to:

e select, manipulate and query data as in standard queries
e select, manipulate and query patterns

e execute cross—over queries over patterns, i.e. queries that associate pat-
terns to raw data

Due to the importance of query languages within the inductive databases
framework, a lot of such languages have been proposed which comprise SQL
extensions. Among them, the most well known, are DMQL, MINE-RULE and
MINE-SQL.

DMQL Han et al [14] proposed DMQL for the generation of patterns from
relational data. Several kinds of rules, like generalized relations (a relation
obtained by generalizing from a large set of low level data), characteristic rules
(an assertion which characterizes a concept), discriminant rules (an assertion
which discriminates concepts described by different classes), classification rules
(a set of rules associated with a specific class problem) and association rules
(which describes associations—relationships between the data) are supported by
DMQL.

The general syntax of a query in DMQL is depicted in Figure 1.

An example of generating association rules through DMQL is depicted in
Figure 2. In this example, “student” is the raw data relation from which patterns
will be mined, “gpa”, “birth place”, “address” are the relevant attributes to be
used, “association rules” is the type of patterns to be mined, “major = cs
and birth place = Canada” are the conditions or constraints over the structure

(DMQL) ::=

use database (databasc_name)

{use hierarchy (hicrarchy_-name) for (attribute)}
(rule -SpeC)

related to (attr.or_agg list)

from (relation(s))

[whero (¢ llllli‘lrillll.\;]

[order by (order.list)]
{with [(kinds_of)] threshold = (threshold_value)
[for (attribute(s))]}

Figure 1: The general syntax of DMQL (depicted from [14])

components of the generated rules and “support threshold=0.05, confidence
threshold=0.7" are the conditions or constraints over the measures components
of the generated rules.

find association rules

related to gpa, birth place, address

from student

where major = “cs” and birth_place = “Canada”
with support threshold = 0.05

with confidence threshold = 0.7

Figure 2: Example of a DMQL query (depicted from [14])

Within DMQL the resulting rules can be stored into relational tables. The
limitation of the DMQL, however, is that only pattern—extraction operations
are supported, whereas no support is provided towards further retrieval and
manipulation of the extracted patterns. Furthermore, only rule patterns are
considered.

MINE-RULE Meo et al [20] proposed MINE-RULE, an extension of SQL,
for discovering association rules from relational data.

A new operator, named MINE RULE has been introduced here. An example
of its usage is depicted in Figure 3. The result of the above query is a new table
called “SimpleAssociations” with schema “BODY, HEAD, SUPPORT, CON-
FIDENCE” (defined by the SELECT clause) where each tuple corresponds to
a discovered rule. These rules come from the raw data relation “Purchase”
(as specified by the FROM clause), where data are grouped by the attribute
“transaction” (as specified in the GROUP BY clause). Regarding the min-
ing parameters, namely “support” and “confidence”, they are specified in the
EXTRACTING RULES WITH clause.

As already demonstrated by the example, within MINE RULE the resulting
rules are stored into relational tables. The limitation of the MINE RULE, how-
ever, is that only association rules discovery is supported;in particular, several

MINE RULE SimpleAssociations AS

SELECT DISTINCT 1..n item AS BODY,
1..1 item AS HEAD,
SUPPORT, CONFIDENCE

FROM Purchase

GROUP BY transaction

EXTRACTING RULES WITH SUPPORT: 0.1,

CONFIDENCE: 0.2

Figure 3: Example of a MINE RULE query (depicted from [20])

variants of simple association rules like association rules from filtered groups,
association rules with clustering and association rules with mining conditions.
Furthermore, further manipulation of the retrieved rules is no supported.

MINE-SQL Imielinski and Virmani [16] proposed MINE-SQL for the genera-
tion and querying of association rules. MSQL provides operators for generation,
post—processing and crossover queries over patterns.

A rules—generation example is depicted in Figure 4. Here a set of rules
is generated from the relation: “Transactions” with specific “confidence” and

“support” criteria and the results are stored into the relation: “MarketAss-
Rules”.

GetRules (Transactions)
into MarketAssRules

where confidence >0.9 and support > 0.3

Figure 4: Example of a MSQL queries—rules generation (depicted from [16])

A pattern—post—processing example is depicted in Figure 5; from all gener-
ated rules of the previous query (relation: “MarketAssRules”) only those with
specific structure, i.e. “body=yes”, are requested.

SelectRules (MarketAssRules)
where body has {(bread=yes)}

Figure 5: Example of a MSQL queries—rules post—processing (depicted from

[16])

Finally, a cross—over query example is depicted in Figure 6, implemented
through the operator VIOLATES ALL which returns all raw data tuples of the
relation: “Transactions” that do not participate in any of the rules specified by
the GetRules operator.

Select *

from Transactions

where VIOLATED ALL (
GetRules (Transactions)
where body has {(bread=yes)}
and confidence > 0.75

)

Figure 6: Example of a MSQL queries—cross—over query (depicted from [16])

Except for the VIOLATES ALL operator, further pattern—data consistency
checking operators are provided like VIOLATES ANY, SATISFIES ALL and
SATISFIES ANY.

As already noted, within MSQL the resulting rules are stored into relational
tables and expect for their generation, post—processing and cross—over queries
over rules are also supported. The limitation of the MSQL, however, is that
only association rules manipulation is supported.

Overview of inductive databases Inductive databases are based on an in-
tegrated architecture where both data and patterns are stored in the same repos-
itory and treated in a similar manner; in fact data mining process is considered
as an extended querying process. Within inductive databases framework, only
specific types of patterns are supported, usually association rules and text min-
ing patterns. Inductive databases treat patterns as permanent objects that can
be stored (together with data into relational tables) and further manipulated
through several languages, like DMQL, MINE RULE and MSQL. Among them
MSQL seems more complete by means that it supports generate, manipulate
and cross—over queries over patterns. There is no temporal information regard-
ing patterns like for example their creation time and/or their validity period.
The only attempt towards this aim is Mine-SQL that provides some cross over
operations like SATISFIES ALL/ANY, VIOLATES ALL/ANY; actually these
operators perform some kind of pattern synchronization or validity checking
against a raw dataset rather than capturing pattern changes. However, they
provide some kind of temporal notion of patterns.

3.2 3—Worlds model

The 3-Worlds model, introduced in 2000 by Johnson et al [17], provides a uni-
fied framework for pattern management, that supports combination of different
mining, analysis and aggregation KDD tasks.

It relies to three key notions: regions, dimensions and hierarchies. Different
pattern types serve to split a given data set into a collection of subsets of tuples,

which are called regions. For example, the cube operator merely splits up a data
set into regions corresponding to all possible group by expressions. In general,
the regions created vary on their spatial shapes and on whether they overlap. A
set of related regions is called a dimension. As an example, consider the set of
itemsets with support exceeding a given threshold or a set of itemsets containing
a specific item p. Dimensions might come with interesting structure that relates
their regions in the form of a hierarchy. In case of frequent itemsets, for example,
the lattice of all possible subsets of the set of itemsets is the associated hierarchy,
whereas in case of a decision tree, the associated hierarchy is the tree.

The 3—-Worlds model is based on a separated architecture consisting of three
distinct worlds:

e Intensional world (I-World)

In the I-World, each region is represented in its intensional form, i.e. as
a description of its members through constraints. For example, a cluster
of products based on their price can be described as: 10 < price < 20.
Regions produced by most mining/analysis operations are convex and can
be modeled as a set of linear inequalities. Non-convex regions can be
modeled as a union of multiple convex regions.

o FExtensional world (E-World)

In the E-World, each region is represented in its extensional form, i.e. by
an explicit enumeration of the tuples belonging to each region. Recalling,
the previous mentioned example, the extensional representation contains
all source data items with price between 10 and 20.

e Data world (D-World)

The D—World consists of raw data, e.g. in the form of relations, from
which regions and dimensions can be created as a result of mining. It can
be viewed as consisting of a relational database.

In a few words, we can state that the I-World is the world of patterns, the
D-World is the world of raw data from which patterns have been extracted
through some mining process, whereas the F-World is the intermediate world
that brings the gap between the two other words by determining which data
produce which patterns.

Manipulating the worlds The manipulation of structures in each world
can be performed through an algebra of choice. For the manipulation of regions
and dimensions in the I-World authors propose the dimension algebra which is
comprised of operators similar to the relational algebra as well as very different
ones that add significant value to data mining and analysis. Examples of such
operators are:

e Selection operator

The selection operator invokes various spatial predicated such as overlap,
containment, disjointness and non—containment. As an example, consider

the query “find all regions of a given decision tree that overlap with a
given constant region: age < 25”.

e Purge operator

The purge operator removes inconsistent regions that might result after
applying some operator on consistent regions. For example, although re-
gions “A < 27 and “A > 3”7 are consistent, their conjunction “(A <
2) A (A > 3)” is inconsistent.

o Cartesian product

Cartesian product creates new regions which are obtained by taking the
pairwise intersection of regions in the two dimension instances.

o Union

In contrast to the traditional approaches, here union does not require
union—compatibility between its operands and thus a fully heterogeneous
union is permitted.

o Minus

Just like the union operator, minus does not require union—compatibility
between its operands. The result of minus contains exactly those regions
in D; for which no equivalent region exists in Ds.

For the manipulation of extensional dimensions in the E-World, authors
state that the relational algebra could be utilized extended with aggregation
and with some modifications. Relational algebra (extended with aggregation)
is also the natural algebra of choice for the D—World.

Connecting the worlds An important part of this work is the bridge oper-
ators between the three worlds which are depicted in Figure 7.

The bridging operators that facilitate moving in and out of the worlds are
the following:

e Populate

The populate operator amounts to “populating” the regions in an inten-
sional dimension D with tuples from a given data set E, producing an
extensional dimension E. Intuitively, for each region in D, there is a cor-
responding “extensional” region in E which contains just those tuples in
E that satisfy the region description. For example, populating a collection
of frequent sets with a transaction database would give an extensional di-
mension with each region containing the set of supporting transactions.
So, the populate operator relates the I-world with the D—world letting us
to move to the E—world.

o Mine

Given a parameter p, the mine operation maps a relation E to an inten-
sional dimension D. As an example of mine operator, consider the decision

Extended = Z
Relational Dimension

Algebra N (regionize) Algebra

¥, fmhcxh}\
e e
Extensional Intensional
Dimensions A lookup) Dimensions
x

Relations

Relational
Algebra

Figure 7: The different worlds in the 3-Worlds model and the bridges (depicted
from [17])

tree extraction. The mine operator specifies the type of the model, but its
exact definition and computation depends entirely on the specific mining
task invoked. In practice, invocation of the mine operator would result in
the running of a relevant (fast) mining algorithm. So, the mine operator
bridges the D and I worlds.

e Lookup

The lookup operator is evolved whenever one might want to recall or
lookup which intentional dimension give raise to an extensional dimen-
sion. This operator is utilized if someone wants to find out the intensional
descriptions of regions in F, as opposed to enumerations of their member
tuples. So, the mine operator bridges the I and E worlds.

o Refresh

Refresh is an incremental version of the populate operator. The refresh
and lookup operators helps in maintaining extensional (resp., intensional)
dimensions in sync with manipulations being done on the intensional
(resp., extensional) dimensions.

Overview of 3—Worlds model The 3-Worlds model provides a generic
framework towards unified mining supporting both patterns, underlying raw
data and their interconnections management. It relies on an independent ar-
chitecture, distinguishing thus the pattern management from raw data man-
agement, preserving, however, mappings between patterns and the underlying
raw data. The 3—Worlds model is not restricted to a specific type of patterns,

it rather considers patterns as constraints and thus is it is more generic than
inductive databases. Algebras for the manipulation of each world, as well as
their relationships have been proposed. The temporal aspects of patterns are
not considered within this model, although synchronization and consistency is-
sues are considered through relevant query operators. The 3—Worlds model is
very appealing in theory, in practice however, there is no work towards its con-
tinuation or some prototype implementation. This of course, does not inverse
the fact that the 3-Worlds model is an important attempt towards unified data
mining. Also, to the best of our knowledge, 3-Worlds model comprise the first
attempt towards discrete pattern management which also considers linkages to
the underlying raw data set from which patterns have been extracted.

3.3 PANDA framework

PANDA provides a unified framework for the representation of heterogeneous
patterns, relying on a separated architecture. Its goal is the design of a Pattern
Base Management System (PBMS) for patterns in correspondence to the Data
Base Management Systems (DBMS) for raw data. The PBMS is a system for
handling (storing/processing/retrieving) patterns defined over raw data in order
to efficiently support pattern matching and to exploit pattern—related operations
generating intensional information. The set of patterns managed by a PBMS is
called pattern—base.
The PANDA logical model is composed of three basic building blocks:

e Pattern type

A pattern type pt is a quintuple pt = (n, ss,ds, ms,et), where n is the
name of the pattern type; ss is the structure schema, ds is the source
schema, ms is the measure schema and et is an expression template, writ-
ten in a given language, which refers to type names appearing in the source
and structure schemes. The name component declares the name of the
pattern type, e.g. “association rules”, “decision tree”, etc. The structure
schema component defines the pattern space by describing the structure
of the patterns instances of the pattern type. The source schema compo-
nent defines the related source space by describing the dataset from which
patterns are constructed. The measure schema component describes the
measures which quantify the quality of the source data representation
achieved by the pattern. The expression template component describes
the relationship between the source space and the pattern space, thus car-
rying the semantics of the pattern. An example of defining the pattern
type “Association Rule” is depicted below:

n : AssociationRule

ss : RECORD(head : SET(STRING), body : SET(STRING))
ds : BAG(transaction : SET(STRING))
ms : RECORD(confidence : REAL, support : REAL)

et : head U body C transaction

10

e Pattern

A pattern is an instantiation of the pattern type. More formally, a pat-
tern p of type pt is a quintuple p = (pid, s, d, m, e), where pid is the unique
pattern identifier, s is the structure component, d is the source compo-
nent, m is the measure component and e is the expression component.
The structure component positions the pattern within the pattern space
defined by its pattern type, the source component identifies the specific
dataset the pattern relates to, the measure component estimates the qual-
ity of the raw data representation achieved by the pattern, whereas finally
the expression component relates the pattern to the source dataset. For
example, in case of an association rule, its structure is comprised of the
head and the body components; its measure consists of the support and
the confidence components; its source is the dataset from which the rule
has been extracted; and finally, the expression component of the rule is an
enumeration of the dataset tuples that support it. An example of defining
a pattern belonging to the pattern type “Association Rule” is depicted
below:

pid : 512
s : (head = {‘Boots’}, body = {‘Socks’, 'Hat’})
d : ‘SELECT SETOF(article)
FROM sales GROUP BY transactionld’
m : (confidence = 0.75, support = 0.55)

e : {‘Boots’, ‘Socks’,"Hat’} C transaction

o Class

A class is a set of semantically related patterns. As an example, consider
the class “SalesRules” containing the set of patterns (including “512”)
generated from “sales” using e.g. the Apriori algorithm.

To increase the modeling expressiveness of the model authors have also pro-
posed interesting relationships between patterns:

e Specialization Specialization allows new entities to be cheaply derived from
existing ones, providing thus the model with extensibility and reusability.
For example, the pattern type “Cluster” could be specialized to the type
“Cluster of Integer”.

o Composition

Composition allows the creation of a part—of hierarchy of patterns, where
the structure schema of a given pattern it is defined in terms of other
patterns. As an example, consider the pattern type “Clustering” which
refers to a set of patterns of type “Cluster”. In this example, there is
a composition relationship between the type “Clustering” and the type
“Cluster”.

11

e Refinement

Refinement allows supporting the modeling of patterns obtained by mining
other existing patterns. As an example, consider a pattern type “Cluster
of Rules” that defines a cluster over association rules instead of raw data.
In this example, the “Cluster of Rules” type refines the “Association Rule”
pattern type.

Within the PANDA framework a Pattern Manipulation Language (PML)
and a Pattern Query Language (PQL) have been proposed. Except for pattern
queries, cross—over queries that relate patterns with the raw data from which
they have been extracted have also been proposed.

The PBMS architecture of the PANDA approach is depicted in Figure 8.

mambEr-al

Fig. 2. The PEMS architecturs.

Figure 8: The PBMS architecture of PANDA (depicted from [22])

12

The PANDA model [22] has been extended in [12] in order to address the
need for temporal information management associated with patterns. More
specifically, the notions of temporal validity, semantic validity and safety of
patterns have been added to the definition of a pattern. The temporal validity
is defined by the user and reflects the intuition of the user regarding the period
that the patterns will be valid. The semantic validity is more strict by means
that it depends on whether the underlying raw data space has been changed.
If a pattern is both temporarily and semantically valid then it is considered
as safe. The previously proposed PML and PQL [22] languages have been
extended in [12] in order to be able to cope with temporal features during pattern
manipulation and querying. As a proof of concept the PSYCHO prototype [11]
has been implemented.

Recognizing the importance of dissimilarity operators for querying, indexing,
mining etc. a generic and flexible framework [9] has been proposed by PANDA
people capable of assessing dissimilarity between both simple patterns and com-
plex ones (i.e. patterns defined over other patterns instead of raw data). The
dissimilarity scores between complex patterns (e.g. clusterings) is conceptually
evaluated in a bottom up fashion by aggregating the dissimilarities between the
matched component patterns (e.g. clusters). Multiply coupling types and ag-
gregation logics are supported. Furthermore, efficiency issues are considered by
avoiding accesses to the raw data from which patterns have been extracted.

Overview of PANDA model The PANDA model provides a both generic
and extensible framework for full pattern management, generic by means that
it treats different pattern types in a uniform way and extensible by means that
new pattern types are easily accommodated into the model. It relies on an
independent architecture where patterns are treated as first class citizens, but
also considers mappings to the underlying raw data space from which patterns
have been extracted. Languages for querying and manipulating patterns as well
as for their association to raw data have been proposed. The temporal aspects
of patterns are taken into account in the core of the model and through the
query languages.

Overview of theoretical approaches Summarizing the theoretical approaches,
we can state that they try to fully facilitate the management of data mining
results, considering issues like storage, representation, querying etc. Regarding
the adopted architecture, the inductive databases rely on an integrated archi-
tecture, whereas 3—Worlds and PANDA model rely on a separate architecture
distinguishing management of patterns from the management of raw data, al-
though the intermediate mappings are preserved and exploited. Although, the
second approach seems more appealing since it is specialized to patterns and
their characteristics, the first approach seems more applicable by means that it
exploits the infrastructure of already existing DBMS.

Regarding the modeling of patterns, the inductive databases concentrate
mainly on association rules, whereas 3—Worlds and PANDA approaches con-

13

sider a generic model capable of handling different types of patterns. The first
approach seems too restricted and un—efficient considering the large diversity
of patterns, whereas the second approach seems more efficient since it can be
easily extended. Ideally, patterns should be treated in a unified way so as new
types can easily be managed with the existing infrastructure. Furthermore, this
generality should not ignore the special characteristics of each pattern type, in
the contrary, these characteristics should be exploited for efficiency reasons.

Regarding the querying of patterns, all approaches recognize the need for
pattern querying and retrieval as well as the need for cross—over queries involving
both patterns and raw data. Several issues arise here that need to be further
investigated, like efficient querying through index structures, for example, or
sophisticated pattern synchronization with respect to raw data.

Finally, the notion of temporariness of patterns has been indirectly recog-
nized by all approaches by means that synchronization and refresh operators
have been provided. Only within PANDA, however, temporal aspects of pat-
terns have been considered in an integrated way in both modeling and querying
of patterns.

4 Industrial approaches

Scientific approaches try to provide an overall solution to the pattern manage-
ment problem, providing both representation/ storage and retrieval/ manipula-
tion capabilities. In the next sub—sections we will present in more detail four of
these approaches, namely PMML, SQL/MM, CWM and JDM APL.

The most popular efforts for modeling patterns is the Predictive Model
Markup Language [13], that uses XML to represent data mining models. An-
other approach, based on SQL, is the SQL/MM standard [4]; here, the supported
mining models are represented by structured types that constitute first-class
SQL types made accessible through the SQL:1999 base syntax. Another frame-
work for metadata representation is proposed by the Common Warehouse Model
[2]: the main purpose of CWM is to enable easy interchange of warehouse and
business intelligence metadata between various heterogeneous repositories, and
not the effective manipulation of these metadata. The Java Data Mining API
[5] addresses the need for procedural support of all the existing and evolving
data mining standards. The JDMAPI specification supports the building of
data mining models, as well as the creation, storage, access and maintenance of
data and metadata that represent data mining results.

From an architectural point of view, all the above solutions can be divided
into two categories. In the first one, an additional layer is built on top of a DBMS
that manipulates patterns, following the traditional object-relational approach.
In the second approach, extension is achieved by allowing the integration of new
system components (such as data types, access methods, storage structures, and
low-level query processing techniques) into the DBMS kernel.

Overall, the listed approaches seem inadequate to represent and handle dif-
ferent classes of patterns in a flexible, effective, and coherent way: in fact, a

14

given list of predefined pattern types is considered only, and no general and
extensible approach to pattern modeling is proposed.

4.1 Specification and standards
4.1.1 Predictive Model Markup Language (PMML)

PMML [13] is an XML-based language that provides a quick and easy way
for companies to define data mining and statistical models using a vendor-
independent method share models between PMML compliant applications al-
lows users to develop models within one vendor’s application, and use other ven-
dors’ applications to visualize, analyze, evaluate or otherwise use these models.
PMML has been developed by the Data Mining Group (DMG), an indepen-
dent, vendor led group for DM standards. Among the DMG members are IBM,
Microsoft, Oracle, SPSS and SAP. PMML format is supported by major com-
mercial products like Oracle, MSSQL and DB2.

PMML supports only predefined types. The types supported so far are: As-
sociation Rules, Decision Trees, Center/Distribution Based Clustering, (Gen-
eral) Regression, Neural Networks, Naive Bayes, Rulesets, Sequences, Text and
Vector Machines.

Through PMML, quality measures associated with patterns can also be rep-
resented. Furthermore, is stored the relation between patterns and the subset of
the source dataset represented by the pattern. Regarding the temporal notion
of patterns,only the model date/time creation are stored.

An example of PMML representation for association rules is depicted in
Figure 9. The raw data set used for the generation of the model is: {¢1: Cracker,
Coke, Water}, to: {Cracker, Water}, t3: {Cracker, Water}, t4: {Cracker, Coke,
Water}.

The data flow in PMML is depicted in Figure 10. Below we present each
block of the flow in more detail:

e DataDictionary

The data dictionary block describes the raw input data hosted in external
sources. More specifically, it defines how the model interprets these data
according to their type (categorical) and value range.

e Transformation

The transformation block converts the original values to internal values us-
ing e.g. normalization of numbers to [0 ... 1], discretization of continuous
fields (derived fields) etc.

o MiningSchema

The mining schema block defines which fields a user has to provide in
order to apply a specific model. It contains model specific data like field
usage type (e.g. predicted, ignored, input).

15

<PMML> ...
<DataDictionary numberOfFields="2" >

<DataField name="transaction" optype="categorical” /> <DataField name="item"
optype="categorical” />

< [DataDictionary>

<AssociationMedel functionName=", assor.latlonkuls nmherOfTransactlons—"-l" numberOfltems="3"
minimumSupport="0.6" minimumConfid ="0.5" OfIt iaic g berOfRules="2">

<MiningSchema>

<MiningField name="transaction" usageType="group" /> <MiningField name="item"
usageType="predicted”/>

</MiningSchema>
<Item id="1" value="Cracker” /> <Item id="2" value="Coke" [/><Item id="3"value="Water"/>

<Itemset id="1" t="1.0" berOfIt "1"> <ItemRef itemRef="1" /> < /It >

<Itemset id="2" support="1.0" berOfIt "1"> <ItemRef itemRef="3" /> </[It L=
rt="1.0" numberofI "2"> <I fi f="1% />

<1 fi f="3" [></I >

<Itemset id="3"

<AssocRule support="1.0" confidence="1.0" antecedent="1" consequent="2" />
<AssocRule support="1.0" confidence="1.0" antecedent="2" consequent="1" />
< [AssociationModel>

</PMML>

Figure 9: Representing association rules through PMML (depicted from [13])

o Model

The model block defines specific model parameters (e.g. tree, neural net-
works, regression).

e Qutput

The output block depends on the specific kind of model. It is described
by leaf nodes in case of a decision tree or by output neurons in case of a
neural network.

o Result

The result block is computed from the output of the model (e.g. in case
of a neural network, the numeric output value should be de-normalized to
original domain values).

PMML supports model composition through sequences of models and model
selection. Two or more models combined into a sequence so that the results of
one model are used as input into another model form a sequence of models. As
an example, consider using regression elements within the nodes of a decision
tree. Through model selection the result of a model can be used to select which
model should be applied next.

PMML also supports built in and user defined functions like fine-grained
transformations (e.g. sum, product, trim).

An important feature of PMML is model verification which gives providers
and consumers of PMML models a mechanism to ensure that a model deployed

16

{ feml .qiul-l
MiningSchema DataDictionary

oy
T
Transformation

| P
Mode|*
incl. ModeiStats
and specific implamentation

= Result
% [gxierral)

Output

Transformation

Figure 10: The data flow in PMML (depicted from [13])

to a new environment generates results consistent with environment where the
model was developed. Recall, that due to differences in operating systems,
data precision and algorithm implementation, the model’s performance can be
affected. To deal with this problem, a dataset of model inputs and known
results that can be used to verify accurate results is generated, regardless of the
environment.

From the above mentioned, is clear that PMML emphases on pattern rep-
resentation issues, rather than management, providing a framework for pattern
exchange between PMML compliant applications.

4.1.2 Common Warehouse Metamodel (CWM)

CWM [2] is a specification that enables easy interchange of metadata between
data warehousing tools and metadata repositories in distributed heterogeneous
environments.

CWM is based on three key industry standards:

e Unified Modeling Language (UML), which is a modeling standard. All
classes in CWM are expressed in UML.

e Meta Object Facility (MOF), which a metamodeling and metadata repos-
itory standard

e XMI XML Metadata Interchange, which is a metadata interchange stan-
dard

CWM consists of a number of sub-metamodels representing common ware-
house metadata in the areas of Data Resources, Data Analysis (OLAP, Data
Mining,) and Warehouse Management.

The CWM Data Mining sub-metamodel represents three conceptual areas:

17

e Model description

The model description is a generic representation of a data mining model.
It consists of the MiningModel, which is a representation of the mining
model itself, the MiningSettings that drives the construction of the model,
the ApplicationInputSpecification that specifies the set of input attributes
for the model and the MiningModelResult that represents the result set
produced by the testing or application of a generated model.

e Settings The settings area elaborates further on the MiningSettings and
their usage relationships to the attributes of the input specification (e.g.
ClusteringSettings, AssociationRulesSettings etc).

o Attributes Two subclasses of Mining Attribute are defined: NumericAt-
tribute and Categorical Attribute.

The CWM specification has been designed to analyze large amounts of data
and the data mining process is just a small part of it. Only predefined pattern
types are supported like Clustering, Association Rules, Supervised, Approxima-
tion, Attribute Importance and Classification. CWM provides information con-
cerning quality measures associated with patterns and supports links between
a pattern and the subset of the source dataset represented by the pattern.

To conclude with CWM, we can state that it is not dedicated to patterns,
rather it is a more generic specification for the interchange of metadata. Fur-
thermore, within CWM representation issues are mainly considered rather than
general management issues.

4.1.3 SQL/MM Part 6, Data Mining

SQL/MM [4] has been developed by the International Standards Organization
(ISO) and it comprises a specification for supporting data management of com-
mon data types (text, spatial info, images, data mining results) relevant in
multimedia and other knowledge intensive applications.

It consists of the following parts:

e Part 1: Framework

o Part 2: Full-text

Part 3: Spatial
e Part 5: Still Image
e Part 6: Data Mining

SQL/MM defines first-class SQL types that can be accessed through SQL:1999
base syntax. In case of data mining models, every model has a corresponding
SQL structured user-defined type. A set of predefined types completes the full
definition of each model. These types are:

18

e DM-*Settings

It stores various parameters of the data mining model (e.g. maximum
number of clusters, depth of a decision tree etc.) The * symbol stands
for Class in case of a classification model, Rule in case of a rule model,
Clustering in case of a clustering model, Regression in case of a regression
model.

o DM-*TestResult

It holds the results of the testing during the training phase of the data
mining models.

o DM-*Result

It is created by running a data mining model against real data.

o DM-*Task

It stores metadata that describe the process and control of testings/ run-
nings.

SQL/MM supports only the predefined types “Clustering”, “Association
Rules”, “Supervised”, “Classification” and “Regression”. Furthermore, it stores
the link between a pattern and the subset of the source dataset represented by
the pattern. For each pattern type, a set of quality measures is provided. No
temporal information is taken into account (except for the model time creation).
Pattern manipulation and querying are possible through SQL. An example of
SQL/MM - DM is depicted in Figure 11.

Concluding with SQL/MM, we can state that although only a part of it is
dedicated to patterns, it provides both representation and management capa-
bilities through SQL statements. However, since its goals concern management
of general multimedia data, rather than patterns, it does not deepen on efficient
pattern management.

4.1.4 Java Data Mining API

Java Data Mining API [5] addresses the need for an independent of the underly-
ing data mining system Java API that will support the creation, storage, access
and maintenance of data and metadata. It has been developed by Sun and is
supported by a majority of companies like IBM, Oracle, SPSS, Blue Martini
Software etc.

JDMAPI provides a standardized access to data mining patterns represented
in various formats, including CWM, SQL/MM DM and PMML. It supports four
conceptual areas: settings, models, transformations and results.

It consists of three logical components that are implemented either as one
executable or in a distributed environment:

o Application Programming Interface (API)

APT is the end-user-visible component of a JDMAPI implementation that
allows access to services provided by the DME

19

DM_RuleModel type represents models which are the result of the search for assoc.
rules

<!--definition -->
CREATE TYPE DM RuleModel AS
(
DM_content CHARACTER LARGE OBJECT(DM_MaxContentLength)

)

<l—public members -->
STATIC METHOD DM_impRuleModel
(input CHARACTER LARGE OBJECT(DM_MaxContentLength))
RETURNS DM RuleModel
METHOD DM_expRuleModel ()
RETURNS CHARACTER LARGE OBJECT(DM_MaxContentLength
METHOD DM_getNORules ()
RETURNS INTEGER
METHOD DM _getRuleTask ()
RETURNS DM RuleTask

Figure 11: SQL/MM - DM example regarding association rules (depicted from

[4])

e Data Mining Engine (DME)

DME provides the infrastructure that offers a set of data mining services
to its API clients.

e Metadata Repository (MR)

MR sstores the data mining objects. It can be based on the CWM frame-
work, specifically using the CWM Data Mining metamodel, or imple-
mented using a vendor representation. MR might exist in a file-based
environment or in a relational database.

JDMAPI supports only the predefined types: “Clustering”, “Association
Rules”, “Classification”, “Approximation” and “Attribute Importance”. It also
supports associating patterns with quality measures. Both pattern representa-
tion and management issues are considered within JDMAPI.

An example of using JDMAPI for building a clustering model is depicted in
Figure 12.

Overview of Specifications and Standards Summarizing the specifica-
tions and standards, we can state that several efforts have been carried out in
this direction, focusing mainly on pattern representation issues rather than full
pattern management issues. This is due to the fact that specifications and stan-
dards emphasize on the efficient and effective interchange of patterns between
different vendors applications. Actually, they act as an agreement between
data mining producers and consumers. Further pattern management issues like

20

[* create a PhysicaDataSet object specifying the location of a table via a URL and
save the object into the default schema */

1)PhysicalDataSetFactory pdsFactory = (PhysicalDataSetFactory)dme-
orm.getFactory(l’j"avax.
datamining.data PhysicalDataSet”);

(2)PhysicalDataSet buildData = pdsFactory.create(url, true);
(3) dmeConn.saveObject(“myPhysicalData”, buildData);

/* create a LogicalData instance based on the physical data */

(4) LogicalDataFactory ldFactory = {(LogicalDataFactory)
dmeConn.getFactory(“javax.datamining.data.
LogicalData”);

(5) LogicalData ld = ldFactory.create(buildData);

[* create a ClusteringSettings instance providing a name, logical data, the
maximum number of clusters and the minimum cluster size desired */

6)ClusteringSettingsFactory ~ csFactory = (ClusteringSettingsFactory)dme-
onn.getFactory(“javax.

datamining
«clustering, ClusteringSettings”);

(7) ClusteringSettings clusteringSettings = csFactory .create();
(8) clusteringSettings setLogicalData(1d);

(9) clusteringSettings.setMaxNumberOfClusters(20);

(10) clusteringSettings.setMinClusterCaseCount(5);

(17) if{ ExecutionState.success.isEqual(status.getState()))

/¥ task completed successtully... */

Figure 12: JDMAPI example - building a clustering model (depicted from [5])

querying, indexing etc. are not considered at all or are payed small attention.
The most popular effort in this direction is PMML which is dedicated to data
mining patterns and statistical models and is supported by major vendors in
the field of data mining.

4.2 DBMS extensions
4.2.1 Oracle Data Mining (ODM)

ODM [7] provides data mining functionality embedded in Oracle Database 10g
to mine data, extract hidden patterns and insights and build advanced business
intelligence applications. All the data mining functionality is embedded in the
Oracle DB (Figure 13).

ODM supports a variety of data mining tasks including “Attribute impor-
tance”, “Classification and Regression”, “Clustering”, “Associations”, “Feature
extraction”, “Text mining” and “Sequence matching and alignment”. ODM
functionality is available to end users through ODM Java API, ODM DBMS
PL/SQL API and the Data Mining Client (GUI).

To build a model, the user defines the input data and the mining function
settings. Models are built and stored in the DMS. ODM supports the persistence
of mining results as independent, named entities in the DMS. A mining results
object contains the operation start time and end time, the name of the model

21

Ela Mining

Figure 13: Oracle Data Mining embedded into Oracle DB (depicted from [7])

used, input data location, and output data location (if any) for the data mining
operation. The user can query model settings and details as well as test the
model.

ODM works towards supporting PMML import /export. Currently, only
Naive Bayes and Association Rules import /export into PMML format are sup-
ported.

4.2.2 Microsoft SQL Server 2005

MSSQL [6] provides an integrated environment for creating and working with
data mining models. Currently, the supported models are “Decision Trees”,
“Clustering”, “Association Rules”, “Itemsets”, “Naive Bayes”, “Sequence Clus-
tering”, “Time Series”, and “Neural Networks”. It also supports PMML 2.1
format.

The major contributions of MSSQL regarding data mining are the following;:

e OLE DB for Data Mining interface, which provides the functionality to
mine knowledge from relational data sources or multi-relational reposito-
ries.

e the Data Mining Extensions (DMX) to SQL language, which provides
a familiar query interface for data mining purposes. More specifically,
model creation and training become familiar “CREATE” and “INSERT
INTO” statements, whereas prediction and content discovery become fa-
miliar “SELECT” statements. Also, the storage and manipulation of pat-
terns is performed in an SQL like style and the results are stored into
relational tables.

The data mining process in MSSQL is depicted in Figure 14

22

Dfllin.ea m‘?dfli_ . Data Mining

Management System
(DMMS)

Train a model:
ERTINTO dmm

Training Data

BN

Prediction nsing a model:
SELECT

» PREDICTION JOIN ...

Predicuion Input Data
SN T : >

Figure 14: Data Mining process in MSSQL (depicted from [6])

4.2.3 IBM DB2 Intelligent Miner

IBMs DB2 Intelligent Miner [3] is a suite of tools for supporting Knowledge
Management. The supported data mining algorithms are “Association Rules”,
“Clustering” and “Classification”. Intelligent Miner produces PMML data min-
ing models which are stored as Binary Large Objects (BLOBs).

The end user might interact with the system through an SQL API, thus
data mining results can be integrated within business applications using external
programming languages.

Furthermore, Intelligent Miner supports patterns-data synchronization through
a scoring mechanism that can be started up by some triggers monitoring raw
data changes.

Overview of DBMS extensions Summarizing the DBMS extensions to pat-
tern management, we can state that industrial approaches have recognized the
emerging need for pattern management and try to incorporate it into existing
DBMSs. So far, issues like pattern storage, simple querying and naive syn-
chronization with respect to raw data are considered. These issues are usually
addressed by exploiting the infrastructure of DBMSs, e.g. in case of patterns’ re-
trieval SQL like languages are utilized. Actually, it seems that these approaches
treat patterns just as another type of (complex) data and rely on some inte-
grated architecture by storing patterns and raw data in the same repository. We
should also note that all approaches are PMML compatible, so as to facilitate
the interchange of data mining models between different vendor applications.

23

5 Conclusions - Open issues - Research direc-
tions

In this chapter we have overview the work performed so far in the area of pattern
management by both academic and industrial parts. Academic approaches try
to provide an overall and generic solution to the pattern management problem,
starting sometimes from scratch, whereas industrial approaches try to incorpo-
rate pattern management into existing DBMSs. Pattern management includes
several issues like representation/ storage, querying/ retrieval, indexing, visual-
ization etc.

So far all approaches deal with the pattern representation issue either by
adopting discrete representation for each pattern type, like PMML, or by adopt-
ing a common model for all pattern types, like PANDA or 3-Worlds models.
Extensibility for novel mining models is a desired feature for a pattern base
management system. Ideally, a general model should be adopted that would
also preserve and utilize pattern type specific characteristics.

Regarding the pattern storage issue, there are approaches that adopt the in-
tegrated architecture where patterns and raw data are stored in the same repos-
itory, like inductive databases and industrial approaches, and others that adopt
a discrete architecture like PANDA and 3-Worlds model. For the storage of
patterns existing data storage approaches are utilized like relational databases,
object-relational databases, XML and data files. Although this is a straightfor-
ward solution of vendors of commercial DMBSs, it could be revisited since the
data mining results are far from the traditional data [18].

A lot of work remains to be done in the area of pattern querying, especially
in that of efficient querying through sophisticated index structures. So far, only
naive querying capabilities are supported, like retrieval of patterns or simple
cross over queries involving both patterns and raw data. Interesting extensions
are sophisticated cross-over queries as well as similarity queries and queries
involving patterns of different pattern types [21].

References

[1] The CINQ (Consortium on Discovering Knowledge with Inductive Queries)
project. http://www.cing-project.org, (valid as of July 2006).

[2] Common Warehouse Metamodel (CWM). http://www.omg.org/cwm,
(valid as of July 2006).

[3] IBM DB2 Intelligent Miner. http://www-
306.ibm.com /software/data/iminer, (valid as of July 2006).

[4] ISO SQL/MM Part 6. http://www.sql-99.0org/SC32/WG4/Progression-
Documents/FCD /fed-datamining-2001-05.pdf, (valid as of July 2006).

[6] Java Data Mining APIL. http://www.jcp.org/jsr/detail /73.prt, (valid as of
July 2006).

24

[6]

[7]

Microsoft SQL Server 2005. http://www.microsoft.com/sql/2005/, (valid
as of July 2006).

Oraclel0g ~ Data Mining Concepts. http://download-
uk.oracle.com/docs/cd/B19306-01/datamine.102/b14339/toc.htm, (valid
as of July 2006).

The PANDA Project. http://dke.cti.gr/PANDA/, (valid as of July 2006).

I. Bartolini, P. Ciaccia, I. Ntoutsi, M. Patella, and Y. Theodoridis. A
unified and flexible framework for comparing simple and complex patterns.
In PKDD, pages 496-499. Springer, 2004.

B. Catania and A. Maddalena. Pattern Management: Practice and Chal-
lenges, pages 280-317. Processing and Managing Complex Data for Deci-
sion Support. Idea Group Publishing, 2006.

B. Catania, A. Maddalena, and M. Mazza. Psycho: A prototype system
for pattern management. In VLDB, pages 1346-1349, 2005.

B. Catania, A. Maffalena, A. Mazza, E. Bertino, and S. Rizzi. A framework
for data mining pattern management. In ECML/PKDD, 2004.

DMG. Predictive Model Markup Language (PMML), (valid as of July
2006).

J. Han, Y. Fu, K. Koperski, W. Wang, and O. Zaiane. DMQL: A data
mining query language for relational databases. In SIGMOD Workshop on
Research Issues on Data Mining and Knowledge Discovery, 1996.

T. Imielinski and H. Mannila. A database perspective on knowledge dis-
covery. Communications of the ACM, 39(11):58-64, 1996.

T. Imielinski and A. Virmani. MSQL: A Query Language for Database
Mining. Data Mining and Knowledge Discovery, 3:373-408, 1999.

T. Johnson, L. Lashmanan, and T. Ravmond. The 3W Model and Algebra
for Unified Data Mining. In VLDB, 2000.

E. Kotsifakos, I. Ntoutsi, and Y. Theodoridis. Database support for data
mining patterns. In Panhellenic Conference on Informatics, 2005.

P. Lyman and H. R. Varian. How Much Information?, 2000 (valid as of
December 2006).

R. Meo, G. Psaila, and S. Ceri. A New SQL-like Operator for Mining
Association Rules. In VLDB, pages 122-133, 1996.

I. Ntoutsi and Y. Theodoridis. Measuring and evaluating dissimilarity in
data and pattern spaces. In Proceedings of VLDB’05 Phd Workshop, 2005.

25

[22] S. Rizzi, E. Bertino, B. Catania, M. Golfarelli, M. Halkidi, M. Terrovitis,
P. Vassiliadis, M. Vazirgiannis, and E. Vrachnos. Towards a Logical Model
for Patterns. In ER, pages 77-90, 2003.

[23] M. Spiliopoulou, Y. Theodoridis, and I. Ntoutsi. Mining the Volatile Web
- Tutorial. In ECML/PKDD, 2005.

[24] Y. Theodoridis, M. Vazirgiannis, P. Vassiliadis, B. Catania, and S. Rizzi.
A Manifesto for Pattern Bases. PANDA TR-2003-03. Technical report,
Research Academic Computer Technology Institute, 2003.

26

