
Pattern-Miner: Integrated Management and Mining over
Data Mining Models

Evangelos E Kotsifakos
Department of Informatics,

University of Piraeus
80 Karaoli-Dimitriou St

GR-18534 Piraeus, Greece
+302104142437

ek@unipi.gr

Irene Ntoutsi
Department of Informatics,

University of Piraeus
80 Karaoli-Dimitriou St

GR-18534 Piraeus, Greece
+302104142437

ntoutsi@unipi.gr

Yannis Vrahoritis
Department of Informatics,

University of Piraeus
80 Karaoli-Dimitriou St

GR-18534 Piraeus, Greece
+302104142437

jb@freemail.gr

Yannis Theodoridis
Department of Informatics,

University of Piraeus
80 Karaoli-Dimitriou St

GR-18534 Piraeus, Greece
+302104142437

ytheod@unipi.gr

ABSTRACT
This demo presents Pattern-Miner, an integrated environment for
pattern management and mining that deals with the whole
lifecycle of patterns, from their generation (using data mining
techniques) to their storage and querying, putting also emphasis
on the comparison between patterns and meta-mining operations
over the extracted patterns. Pattern comparison (comparing results
of the data mining process) and meta-mining are high level
pattern operations that can be applied in a variety of applications,
from database change management to image comparison and
retrieval.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications – Data
Mining

H.3.0 [Information Storage and Retrieval]: General.

General Terms
Design, Algorithms, Management.

Keywords
Pattern management, pattern bases, pattern comparison, pattern
monitoring, meta-mining, data mining, pattern representation.

1. INTRODUCTION
Due to the wide application of Knowledge Discovery in
Databases (KDD) and as a result of data flood that appears
nowadays, the amount of patterns extracted from heterogeneous
data sources (e.g. business, science, telecommunications, Web) is
huge and, quite often, non-manageable by humans. Thus, there is
a need for efficient pattern management including issues like
modeling, storage, retrieval and querying of patterns [6]. Pattern
management is not an easy task. Except for the huge amount of
the generated patterns, another reason is the large variety of
pattern types, as a result of the different application needs that
each type tries to accomplish.

Traditionally, research work on Data Mining focuses on efficient

mining, putting aside the pattern management problem. Recently
however, the need for pattern management has been recognized
by both scientific and industrial parts and several approaches have
been proposed like PMML standard [3] and PMBS approach [5].

In this paper, we demonstrate Pattern-Miner, an integrated
environment that deals with the different aspects of the pattern
management problem, namely pattern modeling, storage and
retrieval issues, using state-of-the-art approaches. This is in
contrast to existing tools that deal with specific aspects of the
pattern management problem, mostly representation and storage.
Although, pattern representation and storage are very important
issues, the amount of patterns generated nowadays and the
complexity of the different pattern types (clusters, decision trees,
frequent itemsets, etc.) call for more sophisticated operations over
the extracted patterns, like pattern comparison and meta-mining.
Pattern-Miner offers an integrated environment that provides the
capability not only to generate and manage the different types of
patterns in a unified way, but also to apply more advanced
operations over patterns, such as comparison and meta-mining,
without facing interoperability or incompatibility problems if
using different applications for each task.

Pattern-Miner follows a modular architecture and integrates the
different Data Mining components offering transparency to the
end user. Before we proceed with the presentation of Pattern-
Miner, we provide some basic notions on patterns and pattern
bases, following the PBMS approach [5]. These notions comprise
the logical model of our approach and the different retrieval
capabilities over patterns are built upon them. The pattern concept
is the cornerstone of a pattern-base. A pattern is a compact and
rich in semantics representation of raw data. Patterns are stored in
a so called pattern base for future analysis. The pattern base
model consists of three layers: pattern types, patterns, and pattern
classes. A pattern type is a description of the pattern structure,
e.g. decision trees, association rules, clusters etc. A pattern type is
a quintuple pt = (n, ss, ds, ms, f), where n is the name of the
pattern type, ss (structure schema) describes the structure of the
pattern type (e.g. the head and the body of an association rule), ds
(source schema) describes the dataset from which patterns are
extracted, ms (measure schema) defines the quality of the source
data representation achieved by patterns (e.g. the support and the
confidence in case of an association rule pattern) and f is the
formula that describes the relationship between the source data
space and the pattern space. A pattern is an instance of the
corresponding pattern type and a class is a collection of

Copyright is held by the author/owner(s).
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
ACM 978-1-60558-193-4/08/08.

semantically related patterns of the same type. After this short
overview of the pattern-base approach, we present in detail the
components of the Pattern-Miner architecture.

2. PATTERN-MINER ARCHITECTURE
The Pattern-Miner architecture is depicted in Figure 1. In the core
of the system lies the Pattern-Miner engine which arranges the
communication between the different peripheral components
(Data Mining engine, Pattern Base, Pattern Comparison module,
Meta-mining module) and also provides the end user interface.

Pattern extraction: The Pattern Extraction component is
responsible for the extraction of patterns according to user defined
criteria, like dataset selection, pre-processing, mining algorithms
and their parameters. We employ for this task WEKA [7], since it
is an open source tool and offers a variety of algorithms for
different mining tasks (including classification, clustering, and
association rule extraction) as well as preprocessing capabilities
over the data.

Pattern representation: Pattern representation is not a simple
task mainly because one can find a great variety of pattern types
(decision trees, clusters, etc.) of varying complexity. The need for
pattern representation in KDD has been recognized by both
research and industrial communities and several representation
approaches have been proposed. The most popular choice is
PMML [3], an XML-based language that provides a quick and
easy way to define data mining and statistical models using a
vendor-independent method and share these models between
PMML compliant applications. The structure of the models in
PMML is described by an XML Schema; different models have
their own schemes. The term “model” in PMML is equivalent to
the term “pattern type” in our approach. In Pattern-Miner, we
adopt the PMML standard for the representation of patterns and
thus, we convert the output of the Data Mining engine component
into PMML format.

Pattern storage: Since patterns are represented as XML
documents (through PMML), a native XML database system is
used for their storage in the Pattern Base. In particular, we
employ the open source Berkeley DBXML [8], which comprises
an extension of the Berkeley DB with the addition of an XML
parser, XML indexes and the XQuery data query language.
Berkeley DBXML stores XML documents into logical groups,

called Containers (the Collections in other native XML database
systems). Users can define various properties for each container
(whether to store the whole document or parts of it, which indexes
to create, etc.). Apart from XML documents, non-XML
documents as well as metadata for the XML documents can be
stored. Metadata are user-defined in the form “property-value”
and easily retrieved.

Pattern querying: Pattern-Miner provides a basic environment
for querying the pattern base. The user defines the pattern set to
be queried, and imposes his/her query in the XQuery language.
Regarding the supported query types, the user can retrieve either
the whole pattern or any component of the pattern (either the
structure or the measure component) and of course, to impose
constraints over these components. Pattern-Miner creates the
proper connection to the pattern base and captures the result in
order to return it to the user. The result is shown in the screen
while it is also saved in the file system.

Pattern comparison: One of the most important operations on
patterns is that of pattern comparison. Defining dissimilarity
operators for patterns could be used to express similarity queries,
including k-nearest neighbor queries (i.e. find the k-most similar
pattern(s) to a query pattern) and range queries (i.e. find the most
similar pattern(s) to a given pattern within a given range).
Dissimilarity could be also employed in order to monitor and
detect changes upon patterns extracted from a dynamic
environment [4]. Recognizing the importance of dissimilarity
assessment in pattern management, we distinguish the comparison
process from the querying process and we implement it separately
through the Pattern comparison module. The comparison is
carried out on the basis of PANDA [1], a generic and flexible
framework for the comparison of patterns defined over raw data
and over other patterns as well. Comparison utilizes both structure
and measure components of patterns. The user defines the patterns
as well as the way that they should be compared, i.e. how the
different components of PANDA are instantiated. The output is a
dissimilarity score accompanied with a justification, a report
actually of how the component patterns have been matched. In
our experiments and for the needs of some real case studies [9] we
enchanced the PANDA framework by adding a couple of new
cluster comparison algorithms.

Meta-mining: Due to the large amount of extracted patterns,
several approaches have lately emerged that apply Data Mining
techniques over patterns instead of raw data, in order to extract
more compact information. The Meta-mining module takes as
input a set of different clustering results extracted from the same
dataset (through different clustering algorithms or different
parameters) or from different datasets (through from the same
generative distribution) and applies Data Mining techniques over
them, in order to extract meta-patterns. So far, the meta-mining
component focuses on meta-clustering [2], i.e. grouping of
clustering results into groups of similar clusterings. The user has
full control of the clustering process by choosing the similarity
function and the clustering algorithm.

All Pattern-Miner components are developed in Java.

3. DEMO DESCRIPTION
To make clear the potential use and the value of Pattern-Miner,
we consider a supermarket as a simple case study and its manager

Pattern
extraction

Data Mining
engine

Pattern-Miner
engine

Pattern
comparison

module

Pattern Base

(XMLDB)

Pattern
storage

Querying
results

Pattern
querying

Pattern retrieval

Patterns

Comparison
results

Meta-mining
module

(complex)
Pattern

extraction

Meta-clustering
results

Figure 1: The PATTERN-MINER architecture

as the end user. Among other pattern types, the manager is
interested in discovering the products that customers tend to buy
together, i.e. association rules. Except for knowing the product
associations at each month, the manager also wants to know how
these associations change from month to month: are there any
new associations, did some old association disappeared, did some
association became stronger (higher confidence) or weaker. Also,
he/she wants to discover groups of months with similar
associations, so as to decide some strategy for each group instead
of each month. This process involves storage of the patterns
discovered at each month, querying, comparison and meta-mining
operations over them. Existing Data Mining tools do not address
all these issues. On the contrary, Pattern-Miner provides the
manager with all this information in an easy and transparent way.
We describe below how each component works for this
supermarket scenario.

Pattern extraction and storage: The user defines the data
source, the Data Mining algorithm and its parameters, e.g. in our
case the supermarket database, the association rule algorithm and
the minimum support and confidence parameters. The extraction
takes place in the Data Mining engine and the results are
converted into PMML format before being stored in a user-
specified container in the XML pattern base (as well as in a file
on the hard disk). In Figure 2 the pattern extraction and storage
screen is depicted for the case of association rule patterns. Using
PMML, the exchange of patterns between different applications is
possible without the need for special import-export tools.

Figure 2: The association-rule extraction screen

Pattern query: The user defines the pattern set to be queried and
the query itself, in Xquery language. Pattern-Miner engine creates
the connection to the pattern base, executes the query and returns
the results to the user (and also saves them to a file). A sample
query is shown in Figure 3, described in both natural language
and Xquery.

Figure 3: A sample query in natural language and in XQuery

Pattern comparison: The user defines the patterns to be
compared as well as the comparison parameters. In our example,
the manager asks for the comparison of association rule patters
extracted from the supermarket data of the two previous months,
in order to inspect whether and how the buying behavior has been
changed. The patterns are retrieved from the Pattern-Base. Then,
the manager configures PANDA [1] by choosing the appropriate
comparison function from the candidate functions implemented
for each pattern type. It should be noticed that in the PANDA
framework there are several comparison functions implemented,
and the user, depending on the application can decide or test what
function better fits his/her application. The results are returned to
the manager, who can detect any changes in the sales-patterns and
decide whether these changes were expected (based on
company’s strategy) or not (indicating some suspicious or non-
predictable behavior). Based on the results, the manager can
decide future strategies regarding offerings, supply etc.

The manager can also extract clusters of customers based on their
buying habits or their demographics. Comparing such clusters of
customers can reveal buying patterns over the year, and thus the
manager can decide about the supplies. In Figure 4 the clustering
comparison tab is shown.

Query (natural language):

Retrieve the association rules from the super_market
dataset that have a support value greater than 0.2.

Query (XQuery):

declare namespace a =
"http://www.dmg.org/PMML-3_1";

collection ("AssociationRules.dbxml")

[dbxml:metadata ("dbxml:dataFileName")=

"C:\Pattern-Miner\data_files\
supper_market.arff"]

/a:PMML /a:AssociationModel
/a:AssociationRule [@support>0.2]

Figure 4: Pattern Comparison Tab in Pattern-Miner

Meta-mining: The user defines the pattern sets to be used as
input to the Meta-mining module (e.g. sets of rules extracted at
each month of 2007), selects the clustering algorithm/ parameters,
as well as the similarity measure between sets of rules. The input
sets are clustered into groups of similar sets of rules (e.g. March
and April could be placed to the same group, since they depict
similar buying behavior), which can be also stored in the pattern
base for future use. The manager can exploit these results in order
to decide similar strategies for months belonging to the same
cluster.

4. CONCLUSIONS AND OUTLOOK
Pattern-Miner is an integrated environment for pattern
management that supports the whole lifecycle of patterns from
their generation to their retrieval, and also offers sophisticated
operations over patterns, like comparison and meta-mining.
Pattern-Miner follows a modular architecture that employs state-
of-the-art approaches at each component. The different building
blocks are implemented in JAVA.

Several improvements can be carried out: First, the existing
components can be enhanced. For example, the querying
component could support more query types, like k-nearest
neighbor queries, range queries and also the query processing
could be more efficient by employing appropriate index
structures.

through appropriate indices and new query types could be
supported. Also, the Meta-mining module can be extended so as to
support more pattern types, like decision trees, association rules,
sequences.

Second, new components can be added, like a visualization
module for better interpretation of the results or a pattern
monitoring module for monitoring and change detection over
patterns extracted from a dynamic population.

Except for the scenario we described, other potential applications
include cluster-based image retrieval [9], pattern validation,
monitoring/ change detection, comparison of patterns extracted
from different sites in a distributed environment setting, etc. In
this context, we are planning to incorporate to the PANDA
framework, some innovative fuzzy clustering comparison
techniques we have recently developed.

5. REFERENCES
[1] Bartolini, I., Ciaccia, P., Ntoutsi, I., Patella, M., and
Theodoridis, Y 2004. A Unified and Flexible Framework for
Comparing Simple and Complex Patterns, Proc. PKDD/
(2004)
[2] Caruana R., Elhawary, M., Nguyen, N., and Smith, C.
2006. Meta Clustering, Proc. ICDM.
[3] DMG - PMML, http://www.dmg.org/pmml-v3-1.html.
[4] Spiliopoulou M., Ntoutsi, I., Theodoridis, Y., and
Schult, R 2006. MONIC: Modelling and monitoring cluster
transitions, KDD, (2006)
[5] Terrovitis , P., Skiadopoulos, S., Bertino, E., Catania,
B., Maddalena, A., and Rizzi, S 2007 Modeling and
language support for the management of pattern-bases, Data
Knowl. Eng. 62, 2 (Aug. 2007).
[6] Theodoridis, Y., Vazirgiannis, M., Vassiliadis, P.,
Catania, B., and Rizzi, S. 2003 A Manifesto for Pattern
Bases, PANDA TR-2003-03. Available at
http://www.pbms.org/papers/TR-2003-03.pdf
[7] Witten, I. H. and Frank, E. 2005. Data Mining: Practical
machine learning tools and techniques, 2/e, Morgan
Kaufmann, 2005
[8] Oracle Corp. Berkeley DB XML. Available at
http://www.oracle.com/database/berkeley-db/xml/index.html
[9] Iakovidis, D.K., Pelekis, N., Karanikas, H., Kotsifakos,
E.E., Kopanakis, I., Theodoridis, Y. 2006. A Pattern
Similarity Scheme for Medical Image Retrieval, ITAB 2006,
Proc of the 7th Annual IEEE Conf on International
Technology Applications in Biomedicine, Ioannina, Greece.

