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Abstract: Clustering algorithms detect groups of similar pop-
ulation members, like customers, news or genes. In many cluster-
ing applications the observed population evolves and changes over
time, subject to internal and external factors. Detecting and under-
standing changes is important for decision support. In this work,
we present the MONIC+ framework for cluster-type-specific transi-
tion modeling and detection. MONIC+ encompasses a typification
of clusters and cluster-type-specific transition indicators, by exploit-
ing cluster topology and cluster statistics for the transition detec-
tion process. Our experiments on both synthetic and real datasets
demonstrate the usefulness and applicability of our framework.
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1. Introduction

For many clustering applications, clusters should not be observed as static ob-
jects, since the underlying datasets undergo changes over time, e.g., customers
and their buying preferences, scientific publications and their topics or viruses
and their resistance to medicaments. Research on spatiotemporal clustering,
incremental clustering and stream clustering addresses the problem by adapting
clusters to changing datasets. However, the tracing and understanding of the
changes themselves is of no less importance for effective decision support. This
latter direction is the subject of this work.

One difficulty with detecting cluster changes results from the fact that there
exist a variety of cluster types due to different clustering methods that have
been proposed in the literature, e.g., hierarchical, partitioning, density based
methods. To overcome this problem, in our previous work (Spiliopoulou et
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al., 2006), we proposed the MONIC framework that models clusters as sets of
objects. MONIC is independent of the clustering algorithm since it relies on the
contents of the underlying data stream. However, due to its generality, MONIC
does not exploit, during the transition detection process, the particular features
of the different cluster types. In this work, we extend MONIC into MONIC+

that also covers the special characteristics associated with the different cluster
types, thus allowing us to capture cluster-type-specific transitions.

After discussing related work in Section 2, we introduce in Section 3 a typi-
fication of clusters. In the same section, we specify the notion of cluster overlap
and cluster match so as to detect consecutiveness between clusters discovered at
different timepoints over an accumulating data stream. Section 4 contains our
cluster transition detection method and heuristics for different cluster types. In
Section 5, we present our first experimental results, whereas Section 6 concludes
our study.

2. Related work

Research relevant to our work can be categorized into methods for cluster change
detection and methods for spatiotemporal clustering. Also relevant to our work
are methods on the specific subject of topic evolution.

2.1. Cluster change detection

The FOCUS change detection framework (Ganti, Gehrke and Ramakrishnan,
1999) compares two datasets and computes a deviation measure between them,
based on the data mining models they induce. Clusters compose a special case
of models: they are modeled as non-overlapping regions described through a
set of attributes (structure component) and corresponding to a set of raw data
(measure component). However, the emphasis in this work is on comparing
datasets, not in understanding how a cluster has evolved inside a new clustering.

The PANDA framework (Bartolini et al., 2004) proposes methods for com-
paring simple and complex patterns defined over raw data and over other
patterns, respectively. In PANDA terminology, a cluster is a simple pattern,
whereas a clustering is a complex pattern. PANDA, though, concentrates on
the generic and efficient realization of comparisons between patterns, rather
than on detection and interpretation of cluster transitions.

The MONIC framework (Spiliopoulou et al., 2006) categorizes and traces
changes upon accumulating datasets by studying changes in the clusterings de-
rived from these datasets. MONIC treats clusters as sets of objects, thus it is
independent of the clustering algorithm. Due to its generality, however, MONIC
does not exploit the specific characteristics of each cluster type, e.g., topology.
In this work, we extend MONIC by exploiting the special features of each clus-
ter type and thus, we derive appropriate transition indicators for specific cluster
types.
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Meila (2002) provides an overview of the related work on comparing differ-
ent clustering results produced from the same dataset under different mining
parameters, e.g., different algorithms or different parameters. The comparison
process relies on criteria based on i) counting pairs, ii) cluster matching, and iii)
variation of information. The counting pairs criteria are based on counting the
pairs of points on which the two clusterings agree (i.e., place them in the same
cluster). The cluster matching criteria are based on finding for each cluster
of the first clustering its best match in the second clustering, where the best
match is evaluated based on the number of common points between the two
clusters. Recently, Zhou, Li and Zha (2005) proposed a new measure in this
category that also considers the distance between cluster centroids, in order to
yield more intuitive results. The variation of information criteria measure the
amount of information that is lost or gained when moving from one clustering
to the other. Note, however, that all these methods refer to the comparison of
(different) clusterings extracted from the same dataset and thus cannot be ap-
plied in the general case of different datasets (Ntoutsi, Pelekis and Theodoridis,
2007).

2.2. Spatiotemporal clustering

Aggarwal (2005) models clusters through kernel functions and their changes as
kernel density changes at each spatial location of the trajectory. The empha-
sis is on computing change velocity and finding the locations with the highest
velocity–the epicenters. Three different types of change are considered in this
work: i) data coagulation that corresponds to connected regions in the data,
which have velocity density larger than a user defined threshold, ii) data disso-
lution that correspond to connected regions, whose velocity density is smaller
than a user defined threshold and iii) data shift to other locations. Yang,
Parthasarathy and Mehta (2005) detect formation and dissipation events for
clusters of spatial scientific data. Their framework supports four types of spa-
tial object association patterns (SOAP), namely Star, Clique, Sequence, and
minLink, which are used to model different interactions among spatial objects.
Such methods, however, assume that the feature space is static, i.e., it does not
evolve over time. Thus, they cannot be used for dynamic feature spaces, e.g.,
in text stream mining, where features are usually frequent words. Furthermore,
hierarchical clustering algorithms cannot be coupled with such a method.

Kalnis, Mamoulis and Bakiras (2005) propose a special type of cluster change,
the moving cluster, whose contents may change while its density function re-
mains the same during its lifetime. They find moving clusters by tracing com-
mon data records between clusters of consecutive timepoints. Our MONIC+

framework for transition detection is more general, since it encompasses several
cluster transition types, allows for the ageing of old objects and does not require
the density function of a moving cluster to be invariant.
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2.3. Topic evolution

Cluster change detection is also relevant to topic evolution in text streams,
where a topic is a cluster label, consisting of the dominant words inside the
cluster.

Morinaga and Yamanishi (2004) propose a topic analysis system that fulfills
three related tasks, namely i) topic structure identification of what kind of
main topics exist and how important they are, ii) topic emergence detection
of the emergence of a new topic and iii) topic characterization, identifying the
characteristics of each main topic. All tasks are formalized in terms of a finite
mixture model.

Mei and Zhai (2005) propose a method for discovering and summarizing the
evolutionary patterns of themes in a text stream. Authors detect the themes at
each period and use the KL divergence measure to find coherent themes over
time, i.e., themes with similar labels. In this way a topic evolution graph is
built that can be used to trace theme transitions and to analyze the theme life
cycles.

These methods are applicable whenever a human–understandable cluster
label can be extracted and traced. Cluster labeling is not feasible for all ap-
plications, though. For this reason, the proposed framework MONIC+ detects
cluster transitions rather than cluster label transitions.

3. Clustering over dynamic data

We assume that data are clustered at timepoints t1, . . . , tn. Clustering ζi, de-
rived at timepoint ti, corresponds to a partitioning of the dataset Di seen thus
far. As is typical in data streams, we allow for the decay of old records: We use
an ageing function age(x, ti) ∈ [0, 1] that assigns a weight to each record x seen
at ti or earlier, so that the most recent records are assigned higher weights.

Definition 1 (Data ageing function) Let t1 . . . , tn be the sequence of time-
points under observation and let di, i = 2 . . . , n be the set of data records accu-
mulated from ti−1 until ti, while d1 is the initial dataset, so that di ∩ dj = ∅ for
i 6= j. A data ageing function assigns a weight age(x, ti) ∈ [0, 1] to data record
x at ti, for each x ∈ ∪i

l=1dl and for each ti:

age : ∪i
l=1dl × {t1 . . . , tn} → [0, 1].

The weights assigned by the ageing function determine the impact of each
record upon clustering ζi derived over the dataset Di ≡ ∪i

l=1(dl, age, ti). The
simplest form of this function is a sliding window.

Our goal is to trace/monitor a cluster found at some timepoint ti among the
clusters of the next timepoint tj . Since this depends on the notion of cluster
itself, we first introduce a typification of clusters (Section 3.1), which we use
next to derive type-specific concepts for the comparison of clusters along the
time axis (Section 3.2).
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3.1. Typification of cluster definitions

Clustering algorithms use a variety of cluster definitions (Han and Kamber,
2000). We propose the following typification that facilitates the study of clusters
as changing objects :

• Type A clusters: Clusters are discovered within a dataset-independent
metric space. A cluster is a geometric object, e.g. a sphere like in K-
means. Cluster changes are observed over the static metric space as geo-
metric transformations.

• Type B1 clusters: There is no metric space or it depends on the contents
of the dataset at each timepoint. A cluster is defined extensionally as a
set of data records. Hierarchical algorithms, which build dendrograms and
express clusters as sets of proximal data points belong to this type. These
algorithms use a metric space to derive a clustering on a dataset, but this
space is data-dependent, in the sense that the addition of a new record
might change the border of a cluster, even if this record does not belong
to the cluster.

• Type B2 clusters: A cluster is defined intensionally as a distribution.
For a cluster X of type B2, we denote its cardinality as card(X), its
mean as µ(X) and its standard deviation as σ(X). The Expectation-
Maximization (EM) algorithm belongs to this category.

Several combinations of the basic types are possible, e.g., when both the
dataset and its statistics are used (types B1+B2).

Note that each cluster can be described as a set of objects (i.e., type B1);
this is a generic definition that holds for every cluster type. Indeed, this was
the approach followed in MONIC (Spiliopoulou et al., 2006) so as to provide a
cluster-type-independent framework for transition detection.

3.2. Cluster matching

A cluster transition is a change effected upon a cluster X ∈ ζi, discovered at
ti, when we observe it at the next timepoint tj . The first step in detecting a
transition is the tracing of X in the clustering ζj of tj – if it still exists. We
define the notion of overlap and of (best) match for a cluster, before we proceed
with a categorization of cluster transitions.

Definition 2 (Cluster overlap) Let ζi be the clustering discovered at time-
point ti and ζj the one discovered at tj , j 6= i. We define a function overlap()
that computes the similarity or overlap of a cluster X ∈ ζi towards a cluster
Y ∈ ζj as a value in [0, 1] such that:
(i) the value 1 indicates maximum overlap, while 0 stands for no overlap and
(ii)

∑

Y ∈ζj
overlap(X, Y ) ≤ 1.

Cluster overlap is defined asymmetrically. After this generic definition of the
overlap function, we specify overlap() for each cluster type.
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Definition 3 (Overlap for Type A Clusters) Let ζi, ζj be two clusterings
of Type A clusters, derived at ti < tj, respectively. For two clusters X ∈ ζi and
Y ∈ ζj, the overlap of X to Y is the normalized intersection of their areas:

overlap(X, Y ) =
area(X) ∩ area(Y )

area(X)
.

Definition 4 (Overlap for Type B1 Clusters) Let ζi, ζj be two clusterings
of Type B1 clusters, derived at ti < tj, respectively. For two clusters X ∈ ζi

and Y ∈ ζj , the overlap of X to Y equals to the normalized sum of the weights
of their common data points:

overlap(X, Y ) =

∑

a∈X∩Y age(a, tj)
∑

x∈X age(x, tj)
.

Definition 5 (Overlap for Type B2 Clusters) Let ζi, ζj be two clusterings
of Type B2 clusters, derived at ti < tj, respectively. For two clusters X ∈ ζi

and Y ∈ ζj, the overlap of X to Y is defined in terms of the proximity of their
means:

overlap(X, Y ) =

{

1 − |µ(X)−µ(Y )|
σ(X) , |µ(X) − µ(Y )| ≤ σ(X)

0 , otherwise
.

We can now define for each cluster found at a timepoint ti, its best match
at a later timepoint tj .

Definition 6 (Cluster match) Let X ∈ ζi, Y ∈ ζj be two clusters derived at
ti < tj, respectively. Further, let τ ≡ τmatch ∈ (0.5, 1] be a threshold value. Y

is “a match for X in ζj subject to τ”, i.e., Y = matchτ (X, ζj), iff:
(i) Y has the maximum overlap to X among all the clusters in ζj, i.e.

overlap(X, Y ) = maxY ′∈ζj
{overlap(X, Y ′)} and

(ii) overlap(X, Y ) ≥ τ .
If no such cluster exists for X in ζj, then matchτ (X, ζj) = ∅.

4. Detecting cluster transitions

A cluster transition is a change experienced by a cluster that was discovered
at the previous timepoint. We first provide a typification of cluster transitions
(Section 4.1). Then, in Section 4.2, we describe the generic transition detection
process, and how it is customized for specific cluster types (Section 4.3).

4.1. Cluster transitions

We use the transition model of MONIC (Spiliopoulou et al., 2006). According
to this model, a transition might concern the content and the form of the cluster
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(internal transition) or rather its relationship to the whole clustering (external
transition).

The external transitions of cluster X ∈ ζi with respect to clustering ζj

discovered at the next timepoint tj are as follows:

• Survival: X survives as cluster Y ∈ ζj (notation: X → Y ), if (a) there
is a match Y for it in ζj and (b) this match does not contain any further
cluster of ζi.

• Absorption: X is absorbed by cluster Y ∈ ζj (notation: X
⊂
→ Y ), if the

match Y of X is also a match for some other cluster X ′ of ζi.

• Split: X is split into clusters Y1, . . . , Yp∈ζj (notation: X
⊂
→{Y1, . . . , Yp}),

if each of these clusters overlaps with X at at least τsplit and, when taken
together, they form a match for X . We show later how the “taking all
clusters together” is realized for each cluster type.

• Dissapearance: X has disappeared (notation: X → ⊙), if none of the
above cases holds.

The external transitions refer to existing clusters. Emerging clusters in ζj

can be easily detected as those that are not the result of some external transition
(notation: ⊙ → Y ).

If a cluster survives, internal transitions may occur. We categorize internal
transitions into changes in size, compactness and location:

• Size transition: A cluster X might: (a) shrink into a smaller cluster,
X ց Y or (b) expand into a larger cluster, X ր Y .

• Compactness transition: A cluster X might become: (a) more com-

pact, X
•
→ Y or (b) less compact/ more diffuse, X

⋆
→ Y .

• Location transition: A cluster X might shift, X · · · → Y .
• No change: X ↔ Y .
Transitions in a group are mutually exclusive, but transitions of different

groups can be combined. For example, a cluster X ∈ ζi, matched by Y ∈ ζj ,
can become larger and more compact, while its location in a metric space might
shift, i.e., X · · ·

•
→ր Y .

4.2. Detection of external transitions

The abstract process of external transition detection in MONIC+ is similar
to the one of MONIC (Spiliopoulou et al., 2006), but the implementation of
some tasks is different for each cluster type. In Fig. 1, we briefly describe the
transition detection algorithm so as to familiarise the reader with its concepts.
Our emphasis here is on the effects of the different cluster types on the transition
detection process, thus, we suggest the interested user to consult MONIC for
an extensive description of the algorithm.

The algorithm takes as input the clustering ζi discovered at ti and detects
external transitions in ζj of tj > ti. For each cluster X ∈ ζi, it computes its
overlap with each cluster in ζj (line 4): To speed up this step, the contingency
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DetectExternalTransitions()
Input: ζi, ζj , Output: the external transitions from ζi to ζj

1. FOR X ∈ ζi

2. splitCandidates = splitUnion = ∅; survivalCluster = NULL;

3. FOR Y ∈ ζj

4. Mcell = overlap(X,Y);

5. IF Mcell ≥ τmatch THEN

6. IF g(X,Y)>g(X,survivalCluster) THEN survivalCluster=Y;

7. ENDIF

8. ELSEIF Mcell ≥ τsplit THEN

9. splitCandidates += Y; splitUnion = splitUnion ∪Y;
10. ENDIF

11. ENDFOR

12. IF (survivalCluster ==NULL OR splitCandidates== ∅) THEN

13. deadList += X; // X → ⊙
14. ELSEIF splitCandidates 6= ∅ THEN

15. IF overlap(X,splitUnion) ≥ τmatchTHEN

16. FOR Y ∈ splitCandidates

17. splitList += (X,Y);

18. ENDFOR //X
⊂
→ splitCandidates

19. ELSE deadList += X; //X → ⊙
20. ENDIF

21. ELSE absorbSurvivals+=(X,survivalCluster);

22. ENDIF

23. ENDFOR

24. FOR Y ∈ ζj

25. absorbCandidates=makeList(absorbSurvivals,Y);

26. IF cardinality(absorbCandidates)>1 THEN //X
⊂
→ Y

27. FOR X ∈ absorbCandidates

28. absorbList += (X,Y); absorbSurvivals -= (X,Y);

29. ENDFOR

30. ELSEIF absorbCandidates=={X} THEN //X → Y

31. survivalList += (X,Y); absorbSurvivals -= (X,Y);

32. ENDIF

33. ENDFOR

Figure 1. Detector of external transitions
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matrix M of the overlap values is built in advance (according to the overlap
definitions in Section 3.2) and each cell M (Mcell) is retrieved when required.
The detector looks first for clusters in ζj that match X (lines 5–6) finding
the best survival candidate (if any) according to Definition 6. If no survival
candidate exists, clusters overlapping with X for more than τsplit are found
(lines 8–9). If neither some survival candidate nor some split candidates exist,
then X is marked as having disappeared (lines 12–13).

For cluster split detection, we build a list of candidates (line 9). As specified
in the transition model, these clusters must form together a match for X . Tak-
ing the clusters together is a cluster-type-specific operation: For B1-clusters it
corresponds to a set union, for A-clusters to the computation of a common area.
Split detection is not possible for B2-clusters, as there is no notion of “taking
distributions together” in this case; we elaborate further on “taking the clusters
together” in Section 4.3. For A- and B1-clusters, if the overlap test (line 15)
succeeds, X is marked as split (line 17), otherwise it is marked as disappeared
(19).

To trace absorption and survival, ζi clusters and their survival candidates
are added to a list of absorptions and survivals (line 21). When all ζi clusters
are processed, this list is completed (line 23). Then, for each ζj cluster Y , the
detector extracts from this list all ζi clusters, for which Y is a survival candidate
(line 25). If this sublist contains only one cluster, then there is a survival of
X within this cluster (lines 30–32). If it contains more than one cluster, then
these have been absorbed by Y : they are marked as such and removed from the
original list (lines 26–29). Similarly to cluster split detection, cluster absorption
can be traced for some cluster types only; lines 14–22 do not apply for type B2
clusters.

In the next section we describe the observed transitions for each cluster type
and we propose type-specific transition indicators.

4.3. Type-dependent detection of transitions

The observable transitions for each cluster type are depicted in Table 1. All
external and internal transitions can be detected for clusters in a metric space
(Type A). For clusters defined extensionally (Type B1), compactness and lo-
cation transitions cannot be observed directly, because concepts like proximity
and movement are not defined. However, when one derives the intensional defi-
nition of a cluster, both transitions become observable as changes in the cluster
density function; we refer to this as Type B1+B2. Conversely, the intensional
definition of a cluster (Type B2) does not allow for the detection of splits and
absorptions, which in turn can be found by studying the cluster members (Type
B1+B2).
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Table 1. Observable transitions for each cluster type

External Internal transitions

Cluster type Size Compact. Location

A. metric space Yes Yes Yes Yes
B1. extensional Yes Yes No No
B2. intensional Survival Yes Yes Yes
B1+B2. Yes Yes Yes Yes

4.3.1. Transition indicators for Type A clusters

Let ζi, ζj be the clusterings at timepoints ti < tj and let X ∈ ζi be the cluster
under observation. The transition indicators proposed in Table 2 use the type-
specific definition of cluster overlap (see Definition 3) and the derived definition
of cluster match (see Definition 6).

Table 2. Indicators for Type A cluster transitions

Step Transition Indicator

1 Survival or Absorption ∃Y ∈ ζj : area(X)∩area(Y )
area(X) ≥ τ

2 X
⊂
→ Y ∃Z ∈ ζi \ {X} : area(Z)∩area(Y )

area(Z) ≥ τ

3 X → Y 6 ∃Z ∈ ζi \ {X} : area(Z)∩area(Y )
area(Z) ≥ τ

4 Split ∃Y1, . . . , Yp ∈ ζ1 :

(∀Yu : area(X)∩area(Yu)
area(X) ≥ τsplit) ∧

area(X)∩area(∪p
u=1Yu)

area(X) ≥ τ

5 X → ⊙ derived from the above

Internal transitions, for surviving clusters: X → Y

6 Size B1 indicators & B2 indicators
7 Compactness geometry-dependent & B2 indicators
8 Location geometry-dependent & B2 indicators

External cluster transitions are detected by computing the area overlap be-
tween cluster X and each candidate in ζj . To detect a split, we customize the
split test (line 15) of Algorithm 1. More specifically, we compute the overlap
between the area of X and that of all split candidates. Since these candidates
cannot overlap, we use the following equation to perform the split test:

area(X) ∩ area(∪p
u=1Yu) =

p
∑

u=1

area(X) ∩ area(Yu).

The detection of internal transitions for type A clusters translates into tracing
the movements of a cluster in a static metric space. In Table 3, we propose
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indicators for spherical clusters, as those produced by, e.g., K-Means and K-
Medoids. We can further use indicators for Type B1 and B2 clusters (discussed
next).

Table 3. Indicators for spherical clusters (Type A)

Transition Indicator

X ր Y
area(X)
area(Y ) ≤ τsize

X ց Y
area(X)
area(Y ) ≥ τsize

X · · · → Y
d(center(X),center(Y ))

min{radius(X),radius(Y )} ≥ τlocation

X
•
→ Y avgx∈X(d(x, center(X)) > avgy∈Y (d(y, center(Y ))

+τcompactness

X
⋆
→ Y avgy∈Y (d(y, center(Y )) > avgx∈X(d(x, center(X))

+τcompactness

The first two heuristics in Table 3 detect size transitions by comparing the
area of X with the area of its surviving counterpart, Y , subject to a threshold
value τsize. If the area grows with respect to this value, this is a sign of size
expansion, whereas if this area decreases, this is a sign of size shrink. The
third heuristic in Table 3 detects location transitions by checking whether the
distance between the centers exceeds a threshold τlocation; we normalize this
distance against the size of the smallest radius. The fourth heuristic states that
a cluster has become more compact if the average distance from the center was
larger in the old cluster than in the new one – subject to a small threshold value
τcompactness. The fifth heuristic for clusters becoming less compact is the reverse
of the second one.

4.3.2. Transition indicators for Type B1 clusters

Let X ∈ ζi be a cluster found in ti. To trace its transitions in ζj , we consider
the indicators proposed in Table 4 for the transitions that can be observed over
Type B1 clusters (compare Table 1).

External cluster transitions are detected by computing the common mem-
bers between cluster X and each candidate in ζj . The split test (line 15) of
Algorithm 1 can be performed more effectively, if one observes that two clusters
in ζj cannot have common members. Then, the split test can be computed from
the individual intersection values in M, because:

∑

a∈X∩(∪p
u=1Yu)

age(a, tj) =

p
∑

u=1

∑

a∈X∩Yu

age(a, tj).

Regarding the internal transitions, only the size transition is observable for
clusters of type B1. Size transitions for a cluster X that has survived as Y
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Table 4. Indicators for Type B1 cluster transitions

Step Transition Indicator

1 Survival or
Absorption

∃Y ∈ ζj :
∑

a∈X∩Y
age(a,tj)

∑

x∈X
age(x,tj) ≥ τ

2 X
⊂
→ Y ∃Z ∈ ζi \ {X} :

∑

a∈Z∩Y
age(a,tj)

∑

z∈Z
age(z,tj) ≥ τ

3 X → Y 6 ∃Z ∈ ζi \ {X} :
∑

a∈Z∩Y
age(a,tj)

∑

z∈Z
age(z,tj)

≥ τ

4 Split ∃Y1, . . . , Yp ∈ ζj :

(∀Yu :
∑

a∈X∩Yu
age(a,tj)

∑

x∈X
age(x,tj) ≥ τsplit) ∧

∑

a∈X∩(∪
p
u=1Yu) age(a,tj)

∑

x∈X age(x,tj) ≥ τ

5 X → ⊙ derived from the above

Internal transitions, for surviving clusters: X → Y

6 Size
X ր Y

∑

y∈Y age(y, tj) >
∑

x∈X age(x, ti) + τsize

X ց Y
∑

x∈X age(x, ti) >
∑

y∈Y age(y, tj) + τsize

are traced by comparing the datasets. While the weights used when computing
cluster overlap are those valid at timepoint tj , the size transition heuristics
consider the weights of the members of X at the original ti. The size transition
heuristic should reflect the importance of the individual cluster members at ti.

4.3.3. Transition indicators for Type B2 clusters

We consider again a cluster X ∈ ζi. To detect size transitions, we used the
heuristic for Type B1 clusters (see Table 4). For the other observable transitions
(see Table 1), we use the indicators in Table 5.

Table 5. Indicators for Type B2 cluster transitions

Step Transition Indicator

1 X → Y ∃Y ∈ ζj : 1 − |µ(X)−µ(Y )|
σ(X) ≥ τ

2 X → ⊙ negation of the above

Internal transitions, for survived clusters: X → Y

3 Size B1 indicators in Table 4
4 Location h1. |µ(X) − µ(Y )| > τh1

h2. |γ(X) − γ(Y )| > τh2

5 Compactness
X

•
→ Y

X
⋆
→ Y

σ(Y ) < σ(X) + τcompactness

σ(X) < σ(Y ) + τcompactness
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The first indicator in Table 5 states that a cluster survives if there is a match
for it, subject to a τ ∈ (0.5, 1] (see Definition 6): the indicator demands that
µ(X) and µ(Y ) be closer than half a standard deviation. Since clusters of the
same clustering do not overlap, we expect that no more than one cluster of ζj

satisfies this condition.
An absorption transition for X ∈ ζi implies finding a Y ∈ ζj that contains

X, Z ∈ ζi. Similarly, a split transition corresponds to finding clusters that
contain subsets of X . However, this implies treating the clusters as datasets
(Type B1). So, we only consider survival and disappearance for B2-clusters.

To detect compactness transitions, we use the difference of the standard
deviations of the clusters X, Y . For location transitions, we use two heuristics
that reflect different types of cluster shift: h1 detects shifts of the mean µ()
(within half a standard deviation, see Definition 6), while h2 traces changes in
the skewness γ():

γ(X) =

1
card(X)

∑

x∈X(x − µ(X))3

(

1
card(X)

∑

x∈X(x − µ(X))2
)

3
2

.

Heuristic h2 becomes interesting for clusters, where the mean has not changed,
but the distribution exhibits a longer or shorter tail.

5. Experiments

We have experimented with a synthetic stream of data records, in which we have
imputed cluster transitions, and with a real dataset, the Network Intrusion
dataset (KDD Cup’99), which is considered to evolve rapidly over time (see
Aggarwal et al., 2003). The goal of the experiments was to gain insights on the
evolution of each dataset by studying the transitions between the underlying
clusters, extracted at consecutive timepoints. Below, we describe the findings
of our framework for each dataset; a short description of the datasets is first
provided.

5.1. Experimenting with a synthetic dataset

The goal of the experiments with the synthetic dataset was to demonstrate the
potentiality of our framework and to display the kind of transitions that it can
detect. To this end we used a 2D dataset, which can be easily visualized.

5.1.1. Generation of an accumulating dataset

We used a data generator that takes as input the number of data points M ,
the number of clusters K, as well as the mean and standard deviation of the
anticipated members of each cluster. The records were generated around the
mean and subject to the standard deviation, following a Gaussian distribution.
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We fixed the standard deviation to 5 and used a 100×100 workspace for two-
dimensional datapoints. The stream was built according to the scenario below.

- t1: Dataset d1 consists of points around the K1 = 5 centers (20,20), (20, 80),
(80, 20), (80, 80), (50, 50).

- t2: Dataset d2 consists of 40 datapoints, distributed equally across the four
corner-groups of d1 data.

- t3: d3 consists of 30 points around location (50,40) and 30 points around
(50,60).

- t4 and subsequent: At each of t4, t5, t6, we added 30 points around t4 :(20,50),
t5 :(20,30) and t6 :(20,40).

For data ageing, we used a sliding window of size w = 2. Hence, at each
timepoint ti, i > 1, the dataset under observation was Di = di ∪ di−1.

5.1.2. Clustering and transition detection

We have built Type A clusters with K-Means (Witten and Frank, 2005). For
Type B1 clusters, we have used Expectation-Maximization (EM) (Witten and
Frank, 2005), which models clusters as Gaussian distributions; we ignored the
distribution information, though, and treated the clusters as datasets (type B1).
For K-means, we have defined K to be the optimal number of clusters found by
EM. The clusterings found at t1, . . . , t6 with EM are shown in Fig. 2. Those
found with K-Means are in Fig. 3; they are different from the EM clusters, thus
implying also different cluster transitions.

Results for type B1 clusters: Fig. 2 depicts the clusters at each timepoint
but delivers little information about the impact of new data and of data ageing.
Such information can be derived by studying the cluster transitions across the
time axis; to this end, we have used the transition indicators of Table 4, setting
τ = 0.5 and τsplit = 0.2 and τsize = 0.2.

In Table 6, the changes in the population are reflected in the discovered
transitions. MONIC+ has correctly mapped the old clusters to the new ones,
identifying size transitions, survivals, absorptions and splits. There are also new
clusters found at t4 and t5.

Results for type A clusters: For Type A clusters, we have used the indica-
tors in Table 2, setting τ = 0.5 and τsplit = 0.2. For the size transition, we have
used the B1 indicator in Table 4 with ε = 0.003. For the other internal tran-
sitions, we have used the indicators for spheres in Table 3 with τlocation = 0.1
(location transitions) and ε = 0.001 (compactness transitions). The transitions
found by MONIC+ and shown in Table 7 reveal that most clusters are unstable,
experiencing all types of internal transitions, or they disappear, giving place to
new (unstable) clusters.

Even in the absence of a visualization (which might be difficult for a real
dataset in a multi-dimensional feature space), these transitions indicate the
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cluster instability and the need for closer inspection of the individual clusters.

Comparing the transitions of clusters extracted through K-means (Fig. 3)
and EM (Fig. 2), one can observe that K-means clusters experience more tran-
sitions, which is justified by the fact that K-means results in less stable clusters.

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

C
15

C
11

C
12

C
13

C
14

0 10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

C
21

C
22

C
21

C
23

C
25

C
24

0 10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

C
31

C
32 C

33

C
34

C
35

0 10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

C
41

C
42 C

43

C
44

C
45

C
46

C
47

20 30 40 50 60 70 80

20

30

40

50

60

70

80

C
52

C
51

C
53

C
54

20 30 40 50 60 70 80

20

30

40

50

60

70

80

C
61

Figure 2. Type B1 clusters at (t1, t2), (t3, t4) and (t5, t6), extracted with EM
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Figure 3. Type A clusters at (t1, t2), (t3, t4) and (t5, t6), extracted with K-means

Table 6. Transitions for Type B1 clusters (synthetic dataset)

Cluster transitions
t2 C11 ր C21 C12 ր C22 C13 ր C23 C14 ր C24 C15 → C25

t3 C21 → C31 C22 → C32 C23 → C33 C24 → C34 C25 ր C35

t4 C31 → ⊙ C32 → ⊙ C33 → ⊙ C34 → ⊙ C35
⊂
→ {C45, C46}

⊙ → C41 ⊙ → C42 ⊙ → C43 ⊙ → C44 ⊙ → C47

t5 C41 → ⊙ C42 → ⊙ C43 → ⊙ C44 → ⊙ C45 → C53

⊙ → C51 C46 → C54 C47 → C52

t6 C51
⊂
→ C61 C52

⊂
→ C61 C53 → ⊙ C54 → ⊙
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Table 7. Transitions for Type A clusters (synthetic dataset)

Cluster transitions

t2 C11 → ⊙ C12
⊂
→ C23 C13

⊂
→ C23 C14 → ⊙ C15 · · ·

•
→ր C25

⊙ → C21 ⊙ → C22 ⊙ → C24

t3 C21 → ⊙ C22 → ⊙ C23 → C32 C24 → ⊙ C25 → ⊙
⊙ → C31 ⊙ → C33 ⊙ → C34 ⊙ → C35

t4 ⊙ → C41 ⊙ → C47 C33 → ⊙ C34 → ⊙ C35 · · ·
⋆
→ց C45

⊙ → C42 C32
⊂
→ {C43, C44}

C31 · · ·
•
→ց C46

t5 C41 → ⊙ C47 → ⊙ C43 → ⊙ C44 → ⊙ C45 · · ·
•
→ց C54

C46
⊂
→ {C52, C53}

C42 · · ·
⋆
→ր C51

t6 C52 → ⊙ C53 → ⊙ C54 → ⊙ C51
•
→ր C61

5.2. Experimenting with the Network Intrusion dataset

5.2.1. The Network Intrusion dataset

The Network Intrusion dataset (KDD Cup’99) contains TCP connection records
from two weeks of LAN network traffic managed by MIT Lincoln Labs (424,021
records). Each record corresponds to a normal connection or an attack. The
attacks fall into four main categories: DOS (i.e., denial-of-service), R2L (i.e.,
unauthorized access from a remote machine), U2R (i.e., unauthorized access to
local superuser privileges), and PROBING (i.e., surveillance and other probing).

As in Aggarwal et al. (2003) and O’Callaghan et al. (2002), we used all 34
continuous attributes for clustering and removed one outlier point. We turned
the dataset into a stream by sorting over the data input order and we assumed
that the in-flow speed is 2000 points per time unit. For time ageing, we have
used a sliding window of size w = 2.

5.2.2. Clustering and transition detection

For cluster generation, we have used the Expectation - Maximization (EM)
algorithm (Witten and Frank, 2005); the algorithm detects the optimal number
of clusters that exist in the underlying dataset, thus there was no need to define
the number of clusters per time point. We have treated the discovered clusters
as of type B1+B2; we used the indicators of Table 4 for the discovery of external
transitions and the indicators of Table 5 for the discovery of internal transitions.

By inspecting the transitions, one can see that the evolution history is dom-
inated by the appearance and disappearance transitions. Also, the surviving
clusters usually undergo internal changes in size, location and/or compactness.
These facts indicate that the discovered clusters are unstable and short-term.
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To study the persistence of the clusterings along the time axis, we used the
passforward ratio measure (Spiliopoulou et al., 2006), which is defined as the
number of clusters of ζi that survive or are absorbed at the next clustering ζi+1.
More formally, the passforward ratio is defined as:

passforwardRatio(ζi ) =
|{X ∈ ζi |∃Y ∈ ζi+1 : X → Y }|

|ζi |

+
|{X ∈ ζi |∃Y ∈ ζi+1 : X

⊂
→ Y }|

|ζi |
.

The first term on the right hand side represents the survival ratio (i.e.,
the number of clusters of ζi that survived at ζi+1), whereas the second term
represents the absorption ratio (i.e., the number of clusters of ζi that were
absorbed at ζi+1).

The passforward ratios for our experiment are depicted in Fig. 4.

Figure 4. Passforward ratios for the Network Intrusion dataset

As one can see in this figure, the passforward ratios are low at most time-
points indicating changes in the underlying population. More specifically, for
the total of 248 clusterings that comprise the dataset, 150 have passforward
ratios lower than 50%. There are also 31 timepoints with zero passforward ra-
tio, which means that none of the clusters found at these timepoints survived or
was absorbed at the next timepoint. Rather, these clusters were either split into
other clusters or they were resolved at the next timepoint. These findings af-
firm the characterization of the Network Intrusion dataset as a rapidly evolving
dataset (Aggarwal et al., 2003).
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The low passforward ratios observed at different timepoints act as alerts for
the end user and notify him to further investigate what really happened at these
timepoints. Since the dataset contains a class label that describes the attack
type, one can exploit these class labels in order to check whether the discovered
transitions correspond to changes in the cluster labels. Another possibility is to
compare the centroids of the clusters so as to find possible changes in the values
of the dimensions.

6. Conclusion and outlook

We have presented the framework MONIC+ for the monitoring of cluster tran-
sitions over accumulating data. MONIC+ is designed for arbitrary types of
clusters, thus making the process of transition detection independent of cluster
discovery. MONIC+ employs heuristics that exploit the particular characteris-
tics of different cluster types, such as topological properties for clusters over a
metric space (Type A) and descriptors of data distribution for clusters defined
as distributions (Type B2). Our experiments show that our framework can
provide useful insights on the evolution of the observed population and also,
that our transition model and transition heuristics can reveal different forms of
cluster evolution.

We intend to enrich our framework by incorporating more transition types
and transition indicators. The low passforward ratio at a specific timepoint
acts as an alert for the end user and requires careful inspection of the observed
clusterings. So far, the overhead of this inspection is left to the user, but we
plan to facilitate his task by detecting, for example, the dimensions/features
that are more responsible for these transitions.

The evaluation of a framework like MONIC+ with the real data is a ma-
jor challenge. Although datasets for the evaluation of data stream clustering
algorithms emerge, a gold standard of data with clusters in transition is still
missing. We will focus on methods generating synthetic datasets for cluster
transition detection and on criteria for the evaluation of cluster transition de-
tectors for them.

The experiment with K-means has shown that the transitions found by
MONIC+ can be used as alerts for cluster instability. This functionality is
also applicable for the analysis of static clusterings and we intend to investigate
it further.
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