

Towards Subspace Clustering on Dynamic Data: An Incremental Version of PreDeCon

Hans-Peter Kriegel, Peer Kröger, Irene Ntoutsi, Arthur Zimek

Ludwig-Maximilians-Universität (LMU), Munich, Germany www.dbs.ifi.lmu.de

StreamKDD, 25/7/2010, Washington DC

Overview

- Motivation
- Related work
- Density based subspace clustering PreDeCon
- Incremental PreDecon
- Evaluation
- Summary and next steps

Motivation

- Modern applications:
 - Web (navigation data, content data, traffic data)
 - Telecommunication, Banks, Health care systems
 - Sensor networks, Position tracking systems ...
- Data characteristics:
 - High dimensionality
 - Dynamic nature
 - Huge amounts of data
- Need for mining over high dimensional, dynamic, huge amounts of data !!!

High dimensionality

- The curse of dimensionality:
 - All points are almost equidistant from each other in high dimensional spaces.
 - The distances between points cannot be used to differentiate them → clustering does not make sense!
- Different features may be relevant for different clusters
 - Feature selection methods, e.g. PCA fail because are global
- Subspace clustering
 - Searches for clusters of objects and subspaces where these clusters exist.

Dynamic data

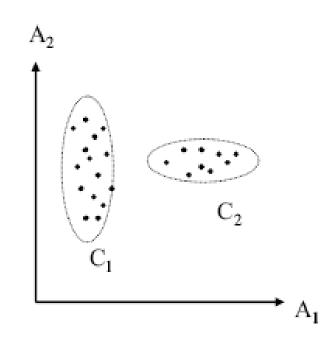
- As new data arrive, the so far built clustering should be updated to reflect these changes:
- Lines of research:
 - Incremental methods
 - e.g., incDBSCAN, incOPTICS
 - Adaptive methods
 - e.g., STREAM, DUCStream (CLIQUE based), CLIQUE⁺(DEMON framework)
 - Might also work over streams
 - Stream methods (summary based)
 - e.g., CluStream, DenStream, HPStream (subspace clustering)

Our method

- We choose:
 - Subspace clustering for high dimensionality
 - Incremental clustering for dynamic data
- We work upon algorithm PreDeCon:
 - a subspace clustering algorithm
 - relies on a density based clustering model, so updates usually cause only limited local changes.

PreDeCon

- It adapts the density-based cluster model of DBSCAN to projected clustering
- PreDeCon applies DBSCAN
 with a weighted Euclidean
 distance function which
 distinguish between
 preferable and non-preferable
 dimensions

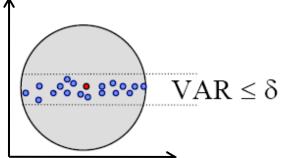


Dimension preferences

 For each point p, its subspace preference vector is defined:

$$\bar{\mathbf{w}}_{p} = (w_{1}, w_{2}, ... w_{d})$$

$$w_{i} = \begin{cases} 1 & \text{if} \quad VAR_{i} > \delta \\ \kappa & \text{if} \quad VAR_{i} \leq \delta \end{cases}$$



• V_{AR_i} is the variance of the ϵ -neighborhood of p in the entire d-dimensional space

$$VAR_{A_i}(\mathcal{N}_{\varepsilon}(p)) = \frac{\sum_{q \in \mathcal{N}_{\varepsilon}(p)} (dist(\pi_{A_i}(p), \pi_{A_i}(q)))^2}{|\mathcal{N}_{\varepsilon}(p)|}$$

 δ , κ (κ>>1) are input parameters

Preference weighted distance

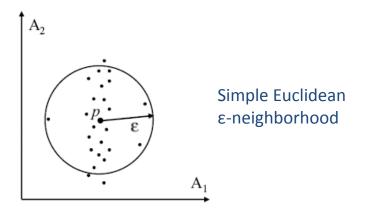
Preference weighted distance function:

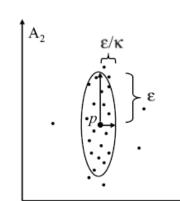
$$dist_p(p,q) = \sqrt{\sum_{i=1}^{d} \frac{1}{w_i} \cdot (\pi_{A_i}(p) - \pi_{A_i}(q))^2}$$

$$dist_{pref}(p,q) = \max\{dist_p(p,q), dist_q(q,p)\}$$

• Preference weighted ε-neighborhood:

$$\mathcal{N}_{\varepsilon}^{\bar{\mathbf{w}}_p}(p) = \{ x \in \mathcal{D} \mid dist_{pref}(p, x) \leq \varepsilon \}$$





Preference weighted Euclidean ɛ-neighborhood

Preference weighted core point

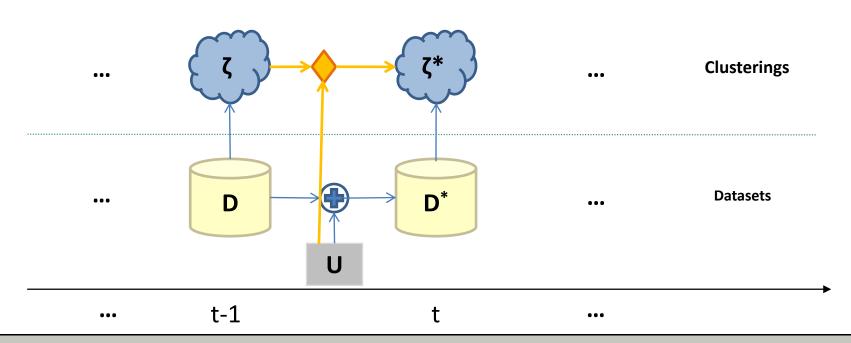
Preference weighted core points:

$$Core_{den}^{pref}(p) \Leftrightarrow \boxed{PDIM(\mathcal{N}_{\varepsilon}(p)) \leq \lambda} \land \boxed{|\mathcal{N}_{\varepsilon}^{\bar{\mathbf{w}}_{o}}(p)| \geq \mu}$$
Condition 1 Condition 2

- Density reachability and connectivity are defined based on core points
- A subspace preference cluster is a density connected set of points associated with a certain subspace preference vector.

Incremental rationale

- At time t-1: D (dataset), ζ (clustering derived uppon D)
- At time t: U (new coming data)
- Goal: Update ζ , so as to derive the valid clustering ζ^* at t.

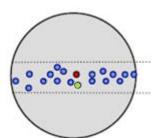


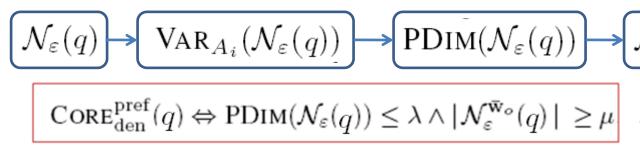
Incremental PreDeCon

- Observation: A preference weighted cluster is determined uniquely by one of its preference weighted core points.
- Idea: Check whether the update affects the core member property of some point
- Sketch of the algorithm:
 - Find affected core points
 - Find affected points
 - Update the clustering model

Affected core points

- The insertion of p, directly affects the points q its ε-neighborhood.
 - $N\varepsilon(q)$ is affected because p is now a member of it

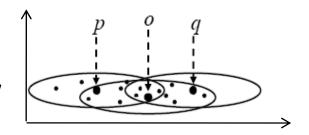




- Effect on the core member property of q:
 - core → non-core
 - non-core \rightarrow core
 - core → core but under different preferences

Affected points

- The insertion of p might cause indirect effects to points that are preference weighted reachable from p:
 - if q: core → non-core after insertion, any
 density connectivity relying on q is destroyed
 - if q: non-core → core after insertion, some new density connectivity might arise



Affected points:

$$AFFECTED_{\mathcal{D}}(p) = \mathcal{N}_{\varepsilon}(p) \quad \cup \quad \{q | \exists o \in \mathcal{N}_{\varepsilon}(p) : REACH_{den}^{pref}(o, q) \text{ in } \mathcal{D}^* \}$$

From where to start restructuring?

- Note that changes in AFFECTED_D(p) are initiated by points in the ε -neighborhood of p
 - No need to consider all points, just those with affected core member property (AFFECTEDCORE)
 - If a point q' is an affected core point, we consider as seeds points for its update any core point q in its preferred neighborhood.

```
UPDSEED = \{q \mid q \text{ is core in } \mathcal{D}^*, \exists q' : q \in \mathcal{N}_{\varepsilon}^{\bar{\mathbf{w}}}(q') \text{ and } q' \text{ changes his core member property in } \mathcal{D}^*\}
```


Update the clustering model

- Call expandCluster() starting with UPDSEED set.
- The pseudoce of the algorithm:

```
algorithm INCPREDECON(\mathcal{D}, \mathcal{U}, \varepsilon, \mu, \lambda, \delta)
   for each p \in \mathcal{U} do
      1. \mathcal{D}^* = \mathcal{D} \cup p;
      2. compute the subspace preference vector \bar{\mathbf{w}}_p;
     // update preferred dimensionality and
     // check changes in the core member property in \mathcal{N}_{\varepsilon}(p)
      3. for each q \in \mathcal{N}_{\varepsilon}(p) do
            update \bar{\mathbf{w}}_a;
            check changes in the core member property of q;
            if change exists, add q to AffectedCore;
      compute UPDSEED based on AFFECTEDCORE
      8. for each q \in UPDSEED do
            expandCluster(\mathcal{D}^*, UPDSEED, q, \varepsilon, \mu, \lambda);
  end;
```


Evaluation

- We evaluated incPreDeCon vs PreDeCon w.r.t. the number of range queries
- For each dataset, we performed 100 random inserts, and counted the number of range queries required by incPreDeCon and PreDeCon.

$$SpeedupFactor = \frac{COST_{\mbox{PREDECon}}(\mathcal{D}^*)}{COST_{\mbox{INCPREDECon}}(\mathcal{D} \cup \mathcal{U})}$$

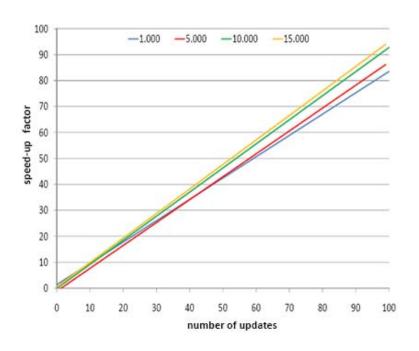
Costs:

- PreDeCon: 2|D|

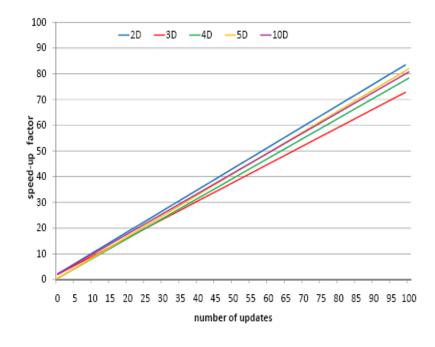
- incPreDeCon: $1+2|N\epsilon(p)|+|AFFECTED_D(p)|$

Evaluation

 Comparison w.r.t. cluster population



 Comparison w.r.t. dimensionality



Summary and next steps

- We presented the first incremental subspace clustering algorithm, based on PreDeCon
 - The update strategy manages to restructure only the affected part of the old clustering

Future work:

- Subspace clustering over fast changing environments like data streams where access to raw data is not allowed
- A unified framework for turning static subspace clustering methods into dynamic methods
- Change detection in subspace clusters, e.g. create, delete, split, merge ... but what about subspace preferences also (e.g. move in a new subspace, "losing" some dimension)?

Questions?

Thank you for your attention!

The speaker's attendance at this conference was sponsored by the Alexander von Humboldt Foundation

http://www.humboldt-foundation.de

