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Abstract—In this paper, we propose a driven by the robotics
field method for revealing global clusters over a fast, huge
and volatile stream of robotic data. The stream comes from
a mobile robot which autonomously navigates in an unknown
environment perceiving it through its sensors. The sensor data
arrives fast, is huge and evolves quickly over time as the robot
explores the environment and observes new objects or new
parts of already observed objects. To deal with the nature
of data, we propose a grid–based algorithm that updates the
grid structure and adjusts the so far built clusters online.
Our method is capable of detecting object formations over
time based on the partial observations of the robot at each
time point. Experiments on real data verify the usefulness and
efficiency of our method.

Keywords-Stream clustering, sensor data, robot data, grid
clustering, cluster formation

I. INTRODUCTION

Due to the wide spread usage of computer devices and the
improvements in both hardware and software infrastructures,
a vast amount of data is available nowadays. This data
can be considered dynamic since it is collected over time.
Subject of this paper is a particularly interesting category of
dynamic data, stream data. Stream data continuously flows
in and out of systems at high speeds, is temporally ordered,
fast changing, massive and potentially infinite. Usually,
storing an entire stream or scanning it multiple times is
impossible due to its tremendous volume [1]. Streams can be
found everywhere, from WWW, position tracking systems,
telecommunications to physics, chemistry and robotics.

Robotics is one of the most quickly advancing research
fields. Different types of complex tasks have been success-
fully assigned to robots in different fields such as the car
industry [17], in medical robotics [16] and in everyday
life [7]. The field is growing fast and more applications
are expected to emerge. For the fulfillment of the different
tasks, robots need to perceive their environment through
their sensors and possess complex perception capabilities
to process the received data.

In this paper, we deal with a stream that is generated by a
mobile robot moving in an unknown environment. The robot
has to accomplish tasks such as fetching a document from
the printer or finding its way to the city center. A necessary
prerequisite for the robot to fulfill these tasks is to be able
to navigate from one point to a goal point without colliding
with obstacles positioned in the environment, such as walls,
doors and tables. To successfully plan such a collision-
free path, the robot must preserve an internal representation
of its environment, the so–called map in robotics. In this
paper, we assume that the robot has no prior knowledge of
the environment and thus, it has to build such a map by
continuously scanning the environment through its sensors.
Usually, the robot range sensors (laser range finders, stereo
cameras, etc.) have specific range limitations and provide
only a partial view of the environment. The complete envi-
ronment is “revealed” gradually as the robot is continuously
moving into it and scans the whole area.

The scans collected by the robot represent a noisy sam-
pling of objects that exist in the real world. A raw point
cloud is just a collection of x, y, z coordinates that can be
of limited use by the robot. The robot has to abstract and
interpret this data in order to perceive spatial structures and
recognize objects. In this work, we use clustering for object
discovery. Cluster analysis has been studied extensively as a
way to get insight into data distributions or as a preprocess-
ing step. A great number of algorithms have been proposed
with most of them referring to static datasets [9]. Lately,
a lot of work has been carried out on adapting traditional
clustering algorithms in order to meet the requirements of
streams or on proposing new algorithms that deal with the
specific characteristics of data streams [1], [6]. In this paper,
we adapt ideas from the stream clustering domain to the
robotics field in order to discover these objects online as
the robot accumulates data by continuously scanning the
environment through its sensors. Our method maintains the
stream distribution online using a dynamic grid structure and
also updates the so far built clusters online based on the new



data, without re–clustering from scratch over the grid. We
call our method “cluster formation discovery” CFODI since
the clusters, i.e., the objects in the robot environment, are
gradually formed as new data is accumulated over time.

The rest of the paper is organized as follows: An overview
of the related work is presented in Section II. Basic concepts
and the problem definition are presented in Section III. In
Section IV, we present our method for cluster formation
discovery over a robotic stream. In Section V, we report
on our results over real robotic data coming from a mobile
robot autonomously navigating in an unknown environment.
Conclusions and directions for future work are presented in
Section VI.

II. RELATED WORK

A. Clustering in Data Mining

A lot of work has been lately carried out on clustering
over dynamic/stream data. The idea is to adapt the clusters
based on the new data. Exact (or Incremental) methods deal
with dynamic data that come at a low rate and require access
to the original raw data (e.g., incDBSCAN [5]). Approximate
(or Stream) methods deal with fast incoming data. The fast
arrival rate does not allow multiple passes over the data,
and much processing time, so these methods work upon
summaries and provide approximate results.

The stream methods can be further categorized into
adaptive methods that maintain a single clustering over
time and online summarization - offline clustering methods
that maintain summaries of the stream online and perform
clustering over these summaries offline in order to derive the
final clusters. The adaptive methods build a single clustering
model and maintain this model over time. To this category
belongs STREAM [8], a k-means extension for streams that
maintains a constant number of k centers over time. In the
online-offline methods, the stream is summarized through
some appropriate summary structure as new data arrives
(online step). These summaries are then used as an input
to some clustering algorithm (offline step). This rationale is
followed by the partitioning algorithm CluStream [2], the
density based algorithm DenStream [3] and the grid based
algorithm Dstream [4].

B. Object detection in Robotics

Understanding and interpreting 3D point clouds is a
problem of major interest in the robotics field and several
methods have been recently proposed.

In [15], the authors use techniques such as outlier removal,
re–sampling, segmentation and model fitting in order to
reconstruct an indoor environment, in particular a kitchen.
Their data scans refer to the whole environment, and their
methods are applied over this static dataset. In [12], the
incremental nature of data acquisition has been considered.
The authors use an incremental update of the their repre-
sentation by taking into account only the points that do not

overlap with the existing models. In [11], an incremental
segmentation algorithm for 3D points has been proposed. All
neighboring points of every point in the new scan are found.
If any of these points are already assigned to a cluster, then
the new point is also assigned to this cluster. If more than
one clusters are candidates for assignment, then a merging
of these clusters is performed.

In [19] and [18], two approaches for 3D semantic mapping
of urban environments are presented. The received point
cloud is segmented and planes are extracted. Their method
though requires all points as input. In [14], the surface
extraction is followed by classification. A set of hard-coded
rules based on the position and size of the surfaces is
additionally used to classify them into common labels of
walls, floors, ceilings and doors.

C. Review and contribution

Several methods have been proposed so far for cluster
detection over streams; these methods, however, cannot
be applied ”as is” to our application. Adaptive methods
like STREAM [8] are not suitable since they assume
that the number of clusters (objects to be detected) is
known in advance and it remains constant over time. On-
line summarization–offline clustering methods like CluS-
tream [2] are also not appropriate since only the sum-
marization part is online whereas clustering is performed
offline and from scratch over the summaries. In our case,
due to the high arrival rate of the robot scans, clustering
should be performed in an online fashion. Clustering should
be online also for another reason: the robot relies upon
this information in order to safely navigate within the
environment avoiding obstacles like walls and tables. So,
it is crucial that the detection of objects that are partially
observed over time is fast. Dstream [4] is closer to our
work since our algorithm also operates on a grid partitioning
of the environment and adjusts the clusters as new data
arrives over time. However, the type of clusters we are
looking for are not just sets of connected dense cells as
in Dstream, rather they correspond to surfaces and thus, the
surface descriptors should also be maintained and considered
for clustering over time. Our idea of online maintenance
of the clusters is inspired by incDBSCAN [5]; however,
incDBSCAN requires access upon the raw data in order to
re-organize the clustering after the update.

From the robotics point of view, in this paper the focus is
on the fast update of the generated data. In contrast to the
techniques presented in II-B, the proposed algorithm does
not use a 2D laser range finder that is actuated to generate
3D scans as most of these methods consider. On the contrary,
it assumes a much faster generatation of dense 3D point
clouds that can originate from devices such as a kinect or a
stereo vision system. This means that the update rate of the
stream is much higher.



III. BASIC CONCEPTS AND PROBLEM DEFINITION

A. Basic concepts

In our scenario, a mobile robot autonomously navigates
in an indoor environment. The robot has no prior knowledge
about the environment and perceives the world through its
sensors by continuously scanning the environment. Each
robot scan produces one point cloud.

3D point clouds: A point cloud is simply a set of
3D points; an example is shown in Figure 1(b). For the
acquisition of point clouds, several different range sensors
exist like the time of flight cameras, 3D laser range finders,
the Kinect, etc.. In our application, the robot is equipped
with a Kinect for Xbox360 [13] sensor that is capable of
extracting detailed 3D point clouds of high quality1.

Surfaces: For the robot, point clouds do not offer any
direct information about the spatial structure of the environ-
ment. To allow for geometric interpretation and abstraction,
the robot should be able to process this data and extract
patterns of spatial information. Typically, surfaces are used
for the description of an environment, thus the patterns we
are focusing on are surfaces.

Normal vectors: 3D point clouds represent a noisy
sampling of surfaces that exist in the real world. The
explicit information about the orientation and curvature of
the surfaces is lost during the sampling process. Normal
vector estimation aims at restoring this information for every
sampled point by constructing a vector that is orthogonal
to the tangent plane of that point. Existing methods for
estimation of normal vectors are based on examining the
neighborhood of the point: Let p be a point in the 3D
point cloud P . Let N(p) ⊂ P be the neighborhood of
p, defined according to a distance function such as the
Euclidean distance. The neighborhood N(p) might contain
all points within a specified distance threshold δ from p
(range–nearest neighbors) or the k most similar points to
p (k–nearest neighbors). The normal vector of p, denoted
by −→p , can then be calculated by computing the total least
square plane fitting the points p ∪N(p) [10].

B. Problem modeling

The robot stream consists of a sequence of 3D scans S1,
S2, . . ., St, . . . arriving at time points t1, t2, . . ., tt, . . ..
Each scan St is a point cloud, i.e., a set of 3D points,
St = {p1, p2, . . . , pj}. Each point pk is described in the 3D
space as pk = 〈pk.x, pk.y, pk.z〉. The number of points per
scan is not fixed, in our application it ranges from 200,000
– 300,000 points. As already stated, a scan has a limited
local range, and thus it “offers” only a partial view of the
environment. This can be seen in Figure 1, where the data
of the first, second, third and so on scans are displayed. The
whole “structure” of the environment is gradually revealed

1Note though that our method does not depend on the device rather it
processes the extracted point clouds.

as the robot moves into the environment and continually
accumulates data through its sensors.

Due to the huge amount of stream data, it is impossible
to retain the density information for every single point.
Therefore, we partition the data space into a grid and work
on the grid instead of the original raw data. The 3D data
space S is partitioned into non-overlapping rectangular units
by partitioning each single dimension into intervals of equal
length ξ2. Each unit u in the 3D grid is the intersection
of intervals from each dimension: u = 〈rx, ry, rz〉, where
rx = [lx, hx), ry = [ly, hy), rz = [lz, hz). The notations l
and h stand for the low and high values, respectively, in the
unit. A point p is contained in a unit u if: lx ≤ p.x < hx,
ly ≤ p.y < hy , lz ≤ p.z < hz . The number of points
falling into a unit describes the density of the unit, denoted
by d(u). A unit u is called dense if its density is above a
density threshold τ , that is: d(u) ≥ τ .

Definition 1 (Directly connected units):
Let ui = 〈rix, riy, riz〉, uj = 〈rjx, rjy, rjz〉 be two units in the

3D space. The units are directly connected if they agree in
two out of the three dimensions and they are neighbors with
respect to the third dimension. This means that there exist
two dimensions d1, d2 such that rid = rjd, d ∈ {d1, d2} and
one dimension d3 such that either hid3

= ljd3
or lid3

= hjd3
.

The grid provides a level of abstraction over the raw data.
After mapping each point onto the grid, the original points
are discarded and we work hereafter upon the grid. Each
unit of the grid is represented in terms of its center, i.e., the
average of the points that fall into the unit. The notion of
normal vector for points should now be extended to units.
To this end, the unit neighborhood should be first defined.

Definition 2 (Unit neighborhood):
Let u be a unit. Let d be the depth parameter, d ≥ 1. The
neighborhood of u in depth d, denoted by Nd(u), consists
of: i) all units u′ that are directly connected to u, and ii) all
units u′′ for which there exists a path of units 〈u1, u2, . . .,
ud〉, u1 = u, ud = u′′ such that ui+1 is directly connected
to ui, 1 ≤ i ≤ d.

Definition 3 (Unit normal vector):
Let u be a unit. Let Nd(u) be its neighborhood in depth
d. The normal vector of u, denoted by −→u , is estimated by
computing the total least square plane fitting the units {u∪
Nd(u)}.

Recall that each unit can be seen as a virtual point located
in the center of the unit. Thus, the normal vector can be
computed as described in Section III-A. We define now the
orientation similarity to evaluate whether two units belong
to surfaces of similar orientation:

Definition 4 (Orientation similarity):
Let u1, u2 be two units in the grid and let −→u1,−→u2 be their

corresponding normal vectors describing the orientation of

2The interval size ξ for grid partitioning is considered to be constant
over time, however the grid itself is dynamic and it is expanded as new
data scans are accumulated.



the surface formed in the neighborhood of each unit. The
orientation similarity between u1, u2 is defined as:

simorient(−→u1,−→u2) = (−→u1 · −→u2)/(‖−→u1‖‖−→u2‖)

where ‖‖ represents the norm or length of a vector. The
orientation similarity is actually the cosine similarity denot-
ing the cosine of the angle between the two vectors. Two
units are considered of similar orientation if their orientation
similarity exceeds the orientation similarity threshold θ.

Based on the orientation similarity and the vicinity of the
units in the grid, we can now define a surface cluster.

Definition 5 (Surface cluster):
A surface cluster clu is a maximal set of connected dense

units {u1, u2, . . . , uk} belonging to the same surface. The
normal vector −→clu describing the orientation of the surface
is estimated by computing the total least square plane fitting
these units.

As already stated, each scan covers only a small part of
the environment, thus “offering” only a partial view of the
environment. The clusters extracted from such a scan would
correspond also to partial objects like some part of the wall
or some part of the table (cf. Figure 1). We refer to these
clusters as local or partial clusters and to the corresponding
objects as local or partial objects. The complete structure
of the objects in the environment is revealed gradually as
the robot navigates into the environment and accumulates
information from the consecutive scans. The scans can be
overlapping, meaning that subsequent scans can refer to the
same areas. In Figure 1 for example, both scans 1(b) and
1(c) detect the beginning of the table. Thus, Si ∩ Si+1 6= ∅,
where Si, Si+1 are consecutive scans at timepoints ti, ti+1,
respectively.

Starting from S1, i.e., the first scan of the robot, the goal is
to dynamically detect object formations over time. Since an
object might not be “observed” completely during a single
scan, objects that span consecutive scans should also be
detected. Consider for example a wall: During the first scan
the robot might only “observe” the left part of the wall,
whereas the rest of the wall is “revealed” gradually as the
robot navigates within the environment (cf. Figure 1). So, the
goal is to detect the partial objects (appearing at single scans)
and also the global (or complete) objects which might span
over more than two consecutive scans. We use clustering to
discover the objects. However, since the requirement for fast
clustering is crucial, in this scenario, we do not re–cluster
all the data from scratch in order to discover the global
objects, rather we start by detecting partial objects and then,
we extend these objects into global objects as new scans
arrive over time. To this end, we exploit the overlap and
vicinity between consecutive scans.

IV. DYNAMIC CLUSTERING

First, we describe (Section IV-A) the extraction of the
initial clusters based on the data from the first scan S1. We

refer to these clusters as partial or local clusters since they
might only partially describe objects, e.g., part of a wall.
Next (Section IV-B), we describe how cluster formations
over time can be detected revealing complete or global clus-
ters, e.g., the whole wall. Note that this is important in our
settings since the robot gradually “reveals” the environment
due to the limited scan range of its sensors.

A. Partial cluster extraction

The goal of the initialization step is to extract the initial
clusters based on the first scan S1. The 3D grid is initialized
based on S1 and the dimension unit length ξ; we denote it
by G1. The dense units DU1 are extracted from G1 based
on the density threshold τ . For each dense unit, the normal
vector describing the orientation of the surface to which the
unit belongs, is computed according to Definition 3.

The cluster extraction process is equivalent to graph
partitioning: the dense units correspond to vertices in the
graph and an edge between two vertices exists if the
corresponding dense units are directly connected in the
grid. A new cluster clu is created starting from a random
dense unit u: the normal vector of clu is initialized to the
normal vector of u, i.e., −→clu = −→u . The algorithm tries to
expand the cluster based on the directly connected dense
units u′ from u. The unit u′ is added to the cluster clu,
if the corresponding surfaces have similar orientations, i.e.
if simorient(

−→
clu,
−→
u′ ) ≥ θ. If this is the case, the normal

vector of clu is updated (the update procedure is explained
below) so as to also consider the influence of u′. The
procedure continues until clu cannot be further expanded
(due to e.g., lack of dense directly connected units or due
to the violation of the orientation similarity threshold). The
algorithm restarts from some other dense unit u′′ that has
not been visited yet and continues until no more unvisited
dense units exist. This way all clusters in G1 are discovered.

Definition 6 (Cluster update):
Let clu be a surface cluster consisting of units
{u1,u2,. . .,un} and let −→clu be its normal vector. The updated
cluster clu′ after the addition of a unit u consists of units
{u1, u2, . . . , un, u}. The normal vector is updated as below:

−−→
clu′ = 〈n ∗

−−−→
clu.x+ u.x

n+ 1
,
n ∗ −−−→clu.y + u.y

n+ 1
,
n ∗ −−→clu.zn+ u.z

n+ 1
〉

So, the new unit u is added to the set of units comprising
the cluster and its effect on the surface normal vector of the
cluster is considered. In particular, the normal vector of the
unit is added to the normal vector of the cluster; this is a
weighted sum since the cluster vector corresponds to a set
of n units and not to a single unit.

The normal vector for a cluster can be maintained online.
To this end, we maintain for each cluster the linear sum
(LS) of values in each of the x, y, z dimensions and the
number of units n falling into the cluster. Whenever, a new
unit u is added to the cluster, the LS quantities are updated



(a) The environment (b) Scan 1 (c) Scan 2 (d) Scan 3 (e) Scan 4 (f) Scan 5

Figure 1. The complete environment (a). Consecutive partial views of the environment as the robot moves around (b-f).

based on the coordinates of u and the number of units
n is increased by one. Based on the LS values in each
dimension and on the number of units in the cluster, the
normal vector of the cluster can be easily estimated. The
incremental computation of the cluster normal vector has the
benefit of efficiency which is important in our scenario of
high arrival rate streams. However, this estimation is lossy by
means that the normal vector obtained by applying surface
fitting over the updated sets of units can be slightly different
from the normal vector obtained through the incremental
update procedure of Definition 6. Since, performing such
a fitting after each unit addition is prohibitive in terms of
cost, we incrementally maintain the normal vector of the
cluster after the addition of each unit and at the end of the
step, where clusters have been discovered we re–compute
the surface normal based on the set of units assigned to
the cluster. In other words, we incrementally maintain the
surface normal as new units are added to the cluster and we
refine the surface vector of the cluster by applying a surface
fitting over the set of units assigned to the cluster.

B. Global cluster extraction

Let Gt−1 be the grid till time point t− 1 and let clust−1
be the global clusters discovered so far. Let St be the new
scan arriving at t. The goal is to update the so far extracted
clusters clust−1 based on the new coming data St, thus
producing the new global clusters clust at t. The update
procedure consists of three steps: i) the grid update step that
maps the new data onto the grid and computes the normal
vectors of the new dense units, ii) the partial extraction step
that extracts the partial/local clusters from this scan, and iii)
the global update step that updates the so far built global
clusters (and possibly starts new clusters) based on the newly
discovered partial clusters.

Step 1: Grid update: The new scan St is mapped onto
the grid. Depending on St the old grid Gt−1 might need to
be expanded. The expansion can be easily done based on the
unit size ξ. Let Gt be the expanded grid at time point t. The
addition of St to the grid might result in new dense units;
these are dense units in Gt but not in Gt−1: we denote them
by DUt. For each new dense unit u ∈ DUt, we compute its
normal vector, −→u , according to Definition 3. The addition
of St might also increase the density of some already dense

unit (being dense in the grid Gt−1 also), since some points
from the new scan might be mapped to this unit. Also, the
normal vector of the unit might change since new dense units
might now be formed in its neighborhood. One can update
the normal vectors of these units according to Definition 3,
so as to consider the effect of the new scan. The units to be
considered for update are all those units in the neighborhood
of some new dense unit. In our experiments though, we did
not re-compute the vectors of the updated dense units due
to the rapid arrival rate of the new scans.

Step 2: Partial cluster extraction: The new dense units
DUt are clustered as described in Section IV-A. The result
is a set of partial clusters clust corresponding to the objects
observed by the robot during the scan St.

Step 3: Global cluster update: The so far built global
clusters clus should be updated according to the partial
clusters clust discovered during the current scan St. Let
clus = {c1, c2, . . . , cm} be the global clusters discovered
so far and let clust = {ct1, ct2, . . . , ctk} be the partial clusters
from the current scan St. The update or merging is done on
the basis of i) the vicinity between the partial and the global
clusters, and ii) their orientation similarity. Intuitively, a
partial cluster is considered as a continuation of a global
cluster if they are close to each other in the grid and also
if their corresponding surface orientations are similar. The
orientation similarity between the normal vectors of the
clusters is computed according to Definition 4. The vicinity
between the clusters is defined as follows:

Definition 7 (Cluster vicinity):
Let ci ∈ clus be a global cluster and let cj ∈ clust be

a partial cluster. Let u ∈ ci and u′ ∈ cj be two units
belonging to the global and local cluster, respectively. The
vicinity between the two clusters is defined in terms of the
adjacency of their units in the 3D grid:

vicinity(ci, cj) = |{(u, u′ : u is directly connected to u′)}|
Vicinity equals to the number of directly connected units
between the two clusters. A large score means that there are
many adjacent units and thus, it is more probable of one
cluster to comprise the continuation of the other.

For each pair of clusters (ci, cj), ci ∈ clus, cj ∈ clust
that are similar with respect to their orientation simi-
larity, their vicinity in the grid is computed as defined



above. If vicinity(ci, cj) exceeds a cluster vicinity threshold
minUnits, the partial cluster cj can be absorbed by the
global cluster ci. In this case, the global cluster ci absorbs
the component units of the partial cluster cj and also, the
normal vector of ci is updated so as to consider the influence
of cj (Definition 6). It might be possible that a partial cluster
cj ∈ clust can be absorbed by more than one global clusters
in clus, e.g., c1 and c2, implying that all these clusters can
be merged together. However such a merge is not always
valid: consider the case of a corner: it might belong to both
the surface cluster of the wall and to the surface cluster of
the ceiling. The unit corner has large vicinity values to both
the wall and the ceiling clusters. If we merge the unit with
both clusters, the resulting cluster would contain both the
wall and the ceiling. To eliminate such cases, we perform
a cluster merge only if the clusters to be merged belong
to surfaces of similar orientations. So, in our toy example
cj is first absorbed by the cluster with the higher vicinity
value, let it be c1, and the normal vector of c1 is updated
(Definition 6). Before merging this cluster with c2, it is first
ensured that the orientation of the two clusters are similar,
i.e., simorient(

−−−−→c1 ∪ cj ,−→c2) ≥ θ. The procedure continues
for the rest of the pairs until no further merges are possible.

After this step, a partial cluster in clust might be absorbed
by a global cluster in clus. Or, a partial cluster might be
absorbed by more than two global clusters, resulting in
cluster merge. The remaining partial clusters, either comprise
the start of some new global cluster or correspond to noise.
However this can be only decided based on the next scans
(More on this on the next paragraph). Finally, for each global
cluster that has absorbed some partial cluster, we refine its
normal vector by computing the total least square plane that
fits the units that comprise the cluster. Intuitively, the role of
the refinement step is to minimize the error that is transfered
from scan to scan.

“Forgetting” old objects: Although no aging function
exists in our stream scenario, a mechanism has been applied
in order to avoid considering for possible expansion those
clusters that have no chance of further growing. In particular,
an interval parameter δ is introduced which controls how far
in the past the last update for a cluster should have happened
so as the cluster to continue being considered for expansion.
For example, interval = 10 means that if after ten scans
a cluster has not been expanded, then the cluster can be
considered as a complete object and thus it is not examined
further for possible expansion.

V. EXPERIMENTS

We experimented with real data generated by a robot
autonomously moving in an indoor environment and we
evaluated both the quality of the extracted clusters and
the efficiency of the proposed method. We compared our
CFODI method with a STATIC method which reclusters

all the points after each scan operating upon the accumu-
lated dataset. A laboratory with several objects like walls,
doors, tables and chairs was chosen as the experimental
environment; part of it is shown in Figure 1(a). The robot
was autonomously navigating into the environment for a
total of 217 secs moving with a constant speed of 0,3
meters per second. The robot was continuously generating
scans of the environment; each scan consisted of between
200, 000− 300, 000 points.

Unless particularly mentioned, the parameters for the
experiments were set as follows: The dimension unit length
ξ for the grid partitioning was set to ξ = 8 cm. The density
threshold τ for considering a unit as dense was set to τ = 15
points. The depth d of the neighborhood for the estimation
of the normal vectors of the units was set to d = 4. The
orientation similarity threshold θ for deciding on whether
two surfaces have similar orientation, was set to θ = 0.53
radians, which corresponds to an angle of 30◦. Both methods
were implemented in C++. All experiments were conducted
on a 3 GHz AMD PhenomTM II X4 with 8GB memory,
running Ubuntu 9.10.

A. Cluster formation over time

The aim of this experiment is to show that our method
can discover cluster formations in the environment of the
robot as the robot moves around and accumulates more and
more data about the environment. In Figure 2, we show the
cluster formation over time for the environment of Figure 1.
CFODI manages to successfully detect clusters that are
gradually formed as the robot accumulates data about the
environment through its sensors. We report here only the
case of the table object, similarly however holds for the
ceiling, floor, left wall and right wall clusters. The table is
placed on the right side of the environment (see Figure 1(a)).
The beginning of the table is detected as a cluster in the first
scan (Figure 2(a)). This cluster is expanded further based
on the second scan (Figure 2(b)). The complete table is
revealed after the third scan (Figure 2(c)). Moreover, in the
last scan (Figure 2(d)) a new cluster is also discovered which
corresponds to the wall at the end of the hallway.

B. Quality and scalability of the results

Since the raw sensor data are not labeled, there is no
ground truth to evaluate the clustering quality. A visual in-
spection of the results (as in Figure 2) shows that our method
manages to deliver meaningful clusters corresponding to real
world objects like table, walls etc. To quantify the quality
of the resulted clusters we run two more experiments.

We compared the quality of the clusters, employing as
a quality measure the average error of normal vectors. In
particular, we compared the normal vector of each cluster
with the normal vectors of the members of the cluster. The
results are presented in Figure 3(a). Both methods result
in small errors; this is expected since the calculation of
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Figure 2. Cluster formation in the robot environment based on consecutive partial data scans

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100 120 140 160 180 200 220

av
g 

er
ro

r

Stream (secs)

CFoDi static

(a) Average normal vector error over time
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(b) Number of clusters over time
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(c) Execution time vs stream time
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(d) Processed points vs stream time

Figure 3. Quality of the results

the normal vectors of the cells is performed with partial
knowledge of the environment due to the fact that not all
neighbors of the cells might be revealed till the examined
time point. The error in the quality of CFODI algorithm is
slightly higher than that of the STATIC method; the average
difference in the error of the two methods is 0.12 rad,
i.e., 6.88 degrees. The reason is that STATIC re-computes
all dense areas after each update and their real density
whereas CFODI does not update the normal vectors of
already detected dense units (c.f. Section IV-B, Step 1).

We also compared the number of clusters discovered by
CFODI and STATIC over time. The results in Figure 3(b)
demonstrate that the two algorithms generated similar num-
ber of clusters over time.

We compared the scalability of the two methods in terms
of running time and processing speed.

The results for the running time are shown in Figure 3(c).
In the x-axis, the stream time is displayed. In the y-axis, the
execution times for CFODI and STATIC are displayed. Our
method outperforms the STATIC method, running with an
almost constant time of 0.34 seconds per scan. On the other
hand, the time required by the STATIC method increases
as more data scans are accumulated following a linear
trend. The results are expected, since the CFODI method
exploits the so far built clusters, whereas the STATIC method
recomputes everything from scratch.

Figure 3(c) demonstrates that there is no a one to
one correspondence between the data scans processed by

CFODI method and the STATIC method (the blue line cor-
responding to CFODI is more dense comparing to the green
line corresponding to STATIC). Since the speed of the stream
is higher than the processing time of the STATIC method,
the STATIC method does not manage to process all the data
scans. The above observation is demonstrated in Figure 3(d),
where the number of points processed by the two methods
as the stream evolves over time are presented. As before,
the stream time is displayed in the x-axis. In the y-axis, the
number of processed points is shown for both CFODI and
STATIC methods. As it is shown, the number of points
processed by the STATIC method is smaller comparing to
those processed by the CFODI method. As the stream size
increases over time, the STATIC method misses more and
more points and the difference between the number of
processed points for each method increases.

We also experimented with the different parameters, but
due to space limitations we only report on our conclusions.
The quality of the clustering results improves as the depth d
increases. This is expected since the estimation of the normal
vector describing the surface orientation is more accurate as
it is based on more neighboring units. However, d should
not be increased too much, otherwise the normal vector of
a cell will be depended on cells that are too far away from
this cell. As expected, the running time increases with bigger
values of d. In our experiments, we have experienced good
results for values 0.05 for the cell size and 1 to 5 for the
size d. Regarding the orientation similarity threshold θ, with



more restrict values, fewer clusters are expanded thus more
clusters are generated. However, for bigger values of θ, it
is possible to merge clusters that correspond to different
surfaces; an extreme case would be to merge the ceiling with
a wall. The vicinity threshold minUnits also affects the
merging procedure. Fewer merges occur when more units are
required for merging clusters which results in more clusters.

VI. CONCLUSIONS AND OUTLOOK

In this paper, a stream clustering method is presented for
revealing global clusters over fast, huge and volatile robotic
data. CFODI is capable of revealing cluster formations over
time based on the partial observations of the robot at each
time point. Empirical evaluation on real data generated
by a mobile robot moving in an unknown environment
shows the usefulness and applicability of our method. In our
experiments, objects like walls, tables, desks, etc. that exist
in the robot’s environment are successfully and gradually
revealed as the robot navigates into the environment and
continuously transmits data through its sensors.

Robotic data impose many challenges in the Data Mining
community due to its tremendous volume and the uncer-
tainty that is inherent in the data. Our ongoing work is on
generating a compact yet representative way of describing
the clusters and on updating these descriptions incrementally
with the arrival of new data. Among other open issues are
the incorporation of the uncertainty in the clustering process
and the classification of the extracted clusters.
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