Summarizing Cluster Evolution in Dynamic Environments

ICCSA 2011, Santander

<u>Eirini Ntoutsi</u>^{1,2}, Myra Spiliopoulou³, Yannis Theodoridis¹

¹ Institute for Informatics, LMU, Germany
 ² Dept of Informatics, Uni of Piraeus, Greece
 3 School of Computer Science, Uni of Magdeburg, Germany

Outline

- Motivation
- The evolution graph
- The FINGERPRINT of evolution
- Experiments
- Conclusions and outlook

Dynamic data/ data streams

- More and more data are produced nowadays:
 - Telcos, Banks, Health care systems, Retail industry, WWW ...
- Modern data are dynamic
 - A special category is data streams: possible infinite sequence of elements arriving at a rapid rate

- Data Mining over such kind of data is even more challenging:
 - Huge amounts of data → only a small amount can be stored in memory
 - Arrival at a rapid rate → need for fast response time
 - The generative distribution of the stream might change over time → adapt and report on changes

Clustering over dynamic/stream data

- Traditionally clustering is applied over static data
- Lately there are approaches that deal with modern data

Adapt clusters to reflect current state of the population.

- CluStream [Aggrawal et al, VLDB'03]
- DenStream [Cao et al, SDM'06]
- Dstream [Chen and Tu, KDD'07]

Trace changes and reason on them so as to gain insights on the population.

- FOCUS [Ganti et al, PODS'99]
- PANDA [Bartolini et al, KDE'09]
- MONIC [Spiliopoulou et al, KDD'06]

Our contribution

- Although there exist methods for:
 - online cluster adaptation as the stream proceeds and
 - change detection between clusterings extracted at different time points
- they do not deal with the efficient long-term maintenance of the changes over an infinite stream of data
- To this end, we propose:
 - A graph representation of cluster changes/ transitions, and
 - ii. methods for condensing this graph into a FINGERPRINT
- The FINGERPRINT is a summary structure where similar clusters are efficiently summarized, subject to an information loss function.

Outline

- Motivation
- The evolution graph
- The FINGERPRINT of evolution
- Experiments
- Conclusions and outlook

Problem settings

- We consider a period of observation $t_1, t_2, ..., t_m, ...$
- New records arrive over time and old records are subject to ageing according to a window size parameter.
 - Under these settings, we create at each time point t the dataset D_t
- At each t, we get a clustering Cl₊
 - Cl, might be the result of i) complete reclustering at t or ii) cluster adaptation from Cl_{t-1}
 - Clustering evolution upon consecutive time points Cl₁₋₁, Cl₁ is monitored

The Evolution Graph

- We model the history of the population evolution in a graph structure, the Evolution Graph EG \equiv G(V,E), that spans the whole period of observation
 - $V = \{Cl_1, Cl_2, ..., Cl_n\}, Cl_i = \{C_1, C_2, ..., C_{|Cli|}\}, 1 \le i < n$
 - $E = \{e = (X, Y) : X \in Cl_i, Y \in Cl_{i+1}\}, 1 \le i < n$

Semantics of the Graph Nodes

- A node v ∈ V, represents a cluster c found at timepoint t_i, i.e. belonging to clustering Cl_i.
- Each node/ cluster is adorned with a label c that summarizes its members in some intensional form.
- We work with 2 types of labels:
 - Cluster centroids, for clusters over numerical data
 - The set of most frequent important keywords, for clusters over text data

Semantics of the Graph Edges

- An edge e=(X, Y) ∈ E, denotes that a cluster X ∈ Cl_i found at t_i has been succeeded by a cluster Y ∈ Cl_{i+1} at t_{i+1}.
- Our notion of succession comes from our MONIC framework [Spiliopoulou et al, KDD'06] and is based on the notions of cluster overlap and cluster matching.
- The cluster overlap of X to Y denotes the members of X that still exist in Y:

$$overlap(X,Y) = \frac{|X \cap Y|}{|X|}$$

Since X might overlap with more than one clusters in Cl_{i+1}, we use the notion of best cluster match or simply cluster match:

```
Y = match (X, Cl_{i+1}) iff:

1) overlap(X, Y) = max_{Z \in Cl_{i+1}}(overlap(X, Z))

2) overlap(X, Y) \ge \tau_{survival} > 0.5
```

Cluster transitions

(External) transitions of cluster X in clustering Cl₁ towards Cl₂:

survival

The best match of X in Cl_2 is not a match for any other cluster in Cl_1 .

$$X \to Y$$

absorption

There is a Y in $\operatorname{Cl_2}$ that is a match for X AND for one more cluster in $\operatorname{Cl_1}$. $X \longrightarrow Y$

$$X \xrightarrow{\subset} Y$$

split

There are Y[1],...,Y[p] in Cl₂ that together match X AND the overlap of each one with X is at least τ_{solit} .

$$X \xrightarrow{\subset} Y[1],...,Y[p]$$

disappearance

X is not absorbed and not split and has not survived.

AND

new cluster appearance Y in Cl₂ is not involved in the external transitions of any X.

Evolution Graph (EG) Construction

- EG is built incrementally as new clusterings arrive at t₁, t₂, ...
- Whenever a new clustering Cl_i arrives at t_i:
 - Clusters of Cl_i are added as nodes to the EG and their labels are computed
 - We detect the cluster transitions w.r.t. Cl_{i-1} and an edge is added to the EG for each detected transition between clusters in Cl_{i-1} and Cl_i
 - Bookkeeping: The cluster members in Cl_{i-1} are discarded, whereas the members of the clusters in Cl_i are retained till the next time point t_{i+1}
 - We need these members to decide latter on the cluster transitions between
 Cl_i and Cl_{i+1}

Outline

- Motivation
- The evolution graph
- The FINGERPRINT of evolution
- Experiments
- Conclusions and outlook

Summarizing cluster evolution

- We summarize EG so as cluster transitions are reflected but redundancies are omitted.
 - To this end, we summarize traces (sequences of cluster survivals) into some condensed form, the fingerprint of the trace.
- For each emerged cluster c that appeared for the first time at t (i.e. a cluster with no incoming edges at t), we define its cluster trace as a sequence of cluster survivals:

$$trace(c) = \langle c_1, c_2, ..., c_m \rangle$$

- First, we introduce the virtual center as the summary of a (sub)trace
 - Let trace(c) = $\langle c_1, c_2, ..., c_m \rangle$. Let X = $\langle c_j, ..., c_{j+k} \rangle$ be a subtrace of it. The virtual center of X is a derived node composed of the averages of the labels of the nodes in X:

$$\widehat{X}[i] = \frac{1}{|X|} \sum_{c_i \in X} \widehat{c}[i]$$

where [i] is the i-th dimension

To indicate that a cluster c has been mapped to a virtual center, we use the notation

$$c \mapsto \widehat{X}$$

The notion of summary for a trace

- Now, we define the summary of a trace
 - Let T = <c₁, c₂, ..., c_m> be a trace. A sequence S = <a₁, a₂, ..., a_k> is a summary of T iff
 - a) $k \le m$ and
 - b) for each c_i ∈ T there exists an a_j ∈ S such that either c_i=a_j or c_i→a_j, i.e. c_i belongs to a subtrace that was summarized to the virtual center a_j.
- There are several possible summarizations of a trace, each one corresponding to a different partitioning of the trace into subtraces and consequently producing different virtual centers.
- We are interested in summarizations that achieve high space reduction while keeping information loss minimal

Summarization criteria

Information Loss

$$ILoss_trace(T, S) = \sum_{c \in T} ILoss_cluster(c, a_c)$$

$$ILoss_cluster(c, \widehat{X}) = dist(\widehat{c}, \widehat{X})$$

Space Reduction

$$SReduction_trace(T, S) = \frac{(|T| - |S|) + (|T| - 1 - (|S| - 1))}{|T| + |T| - 1}$$
$$= \frac{2 \times (|T| - |S|)}{2 \times |T| - 1)} \approx \frac{|T| - |S|}{|T|}$$

The FINGERPRINT of a trace

- Let T be a trace and S be a summary of T. S is a fingerprint for T iff:
 - (C1) For each node c ∈ T that has been replaced by a virtual center a ∈ S, it holds that:

$$dist(\widehat{c}, a) \leq \tau$$

(C2) for each (sub)trace $< c_1, c_2, ... c_k >$ of T that has been summarized into a single virtual center a it holds that \forall i=1, ...,k-1:

$$dist(\widehat{c_i}, \widehat{c_{i+1}}) \le \tau$$

 Thus, S is a fingerprint of T if it has partitioned T into subtraces of clusters that are similar to each other (condition C₂) and each such subtrace has a virtual center that is close to all its original nodes (condition C₁).

Graph Summarization

- Once the traces are summarized into fingerprints, the evolution graph can be also summarized
- We propose 2 summarization strategies:
 - Incremental summarization of the graph
 - Batch summarization of the graph

Incremental summarization

- The traces are summarized incrementally as new clusterings arrive over time
- If a new clustering arrives, we check whether there is some cluster survival from the previous timepoint.
- Let x be a cluster that survives into a latter cluster y.

Irene Ntoutsi

- If $dist(x.label, \widehat{y}) < \tau$, y is not added to the graph. Rather, x and y are summarized into a virtual center v and x is replaced in the graph by v.
- Otherwise, the node y and the edge (x,y) are added to the graph

Batch summarization

- The summarization is performed over the whole trace based on two heuristics:
 - Heuristic A (deals with the violation of C2):
 - If T contains adjacent nodes that are in larger distance than τ from each other split T as follows: detect the pair (c_1, c_2) with the largest distance and split T into T_1 , T_2 such that c_1 is the last node of T_1 and t_2 is the first node of t_2
 - Heuristic B (deals with the violation of C1):

If T satisfies C2 but contains nodes that are in larger distance than τ from the virtual center vCenter(T), split T as follows: the node c that has the maximum distance to vCenter(T) is detected and T is partitioned into T1, T2 such that c is the last node of T1 and its successor is the first node of T2

Outline

- Motivation
- The evolution graph
- The FINGERPRINT of evolution
- Experiments
- Conclusions and outlook

Experiments

- We experiments with 3 datasets
 - The Network Intrusion dataset: contains TCP connection logs from 2 weeks of LAN network traffic
 - Numerical dataset
 - Rapidly evolving
 - The Charitable Donation dataset: contains information on people who have made charitable donations in response to direct mailings
 - Numerical dataset
 - Relatively stable
 - The ACM H2.8 dataset: the set of documents inserted in between 1997 and 2004 in the ACM Digital Library, category H2.8 on Database Applications
 - Text dataset
 - Evolves in an unbalanced way

Example from the ACM H2.8 dataset

In 1998 we observe a new cluster on Information Systems which survives till 2000.

$$trace(c_{1998_2}) = \prec c_{1998_2}c_{1999_6}c_{2000_3} \succ \\ \widehat{c_{1998_2}} = < information(0.96), system(0.61) >, \\ \widehat{c_{1999_6}} = < information(0.88), system(0.74) > \text{and} \\ \widehat{c_{2000_3}} = < information(0.76), system(0.78) >.$$

- The batch FINGERPRINT, condenses this trace into a single virtual center in 1 step: $\widehat{v} = <information(0.87), system(0.71) >$
- The incremental FINGERPRINT does the same in 2 steps:
 - First summarizes c_{1998_2} and c_{1999_6} into a virtual center v_0

$$\widehat{v_0} = \langle information(0.92), system(0.68) \rangle$$

Then summarizes v₀ and c_{2000 3} into a new virtual center

$$\widehat{v'} = \langle information(0.84), system(0.73) \rangle$$

Space reduction

Network intrusion dataset

Charitable donation dataset

Impact of threshold τ on space reduction

Information loss

Network intrusion dataset

Charitable donation dataset

Impact of threshold τ on information loss

Outline

- Motivation
- The evolution graph
- The FINGERPRINT of evolution
- Experiments
- Conclusions and outlook

Conclusions & Outlook

- We presented the FINGERPRINT framework for summarizing cluster evolution in a dynamic environment subject to information loss and space reduction criteria
- Batch FINGERPRINT has better quality but requires the whole graph as input. Some hybrid method might be interesting
- So far we summarize only cluster survivals. What about splits and absorptions?
- The impact of clustering quality on the summarization

Questions?

Thank you for your attention!

For further questions please contact me at: ntoutsi@dbs.ifi.lmu.de

The speaker's attendance at this conference was sponsored by the Alexander von Humboldt Foundation

http://www.humboldt-foundation.de

