

Information Engineering and Computer Science Department University of Trento, Italy

HIGH DIMENSIONAL & DYNAMIC DATA:

High dimensionality

LMU

- overlapping / irrelevant/ locally relevant attributes
- Dynamic/ Stream data
- only 1 look at the data (upon their arrival) / volatile data
- ! Clustering upon such kind of data is very challenging!!
- both members and dimensions might evolve over time
- Most existing approaches deal with 1 aspect of the problem
- (3) HPStream assumes a constant #clusters over time

OUR SOLUTION (HDDSTREAM):

1st density-based projected clustering algorithm for clustering high dimensional data streams:

- High dimensionality > projected clustering
- Stream data

 online summarize— offline cluster
- Density based clustering → no assumption on #clusters/ invariant to outliers/ arbitrary shapes
- © Quality improvement
- © Bounded memory
- © # summaries adapts to the underlying population

PROJECTED MICROCLUSTERS:

For points $C = \{p_1, ..., p_n\}$ arriving at $t_1, ..., t_n$, the summary models both content and dimension preferences of C at t.

$$mc \equiv mc(C,t) = \langle CF1(t), CF2(t), W(t) \rangle$$

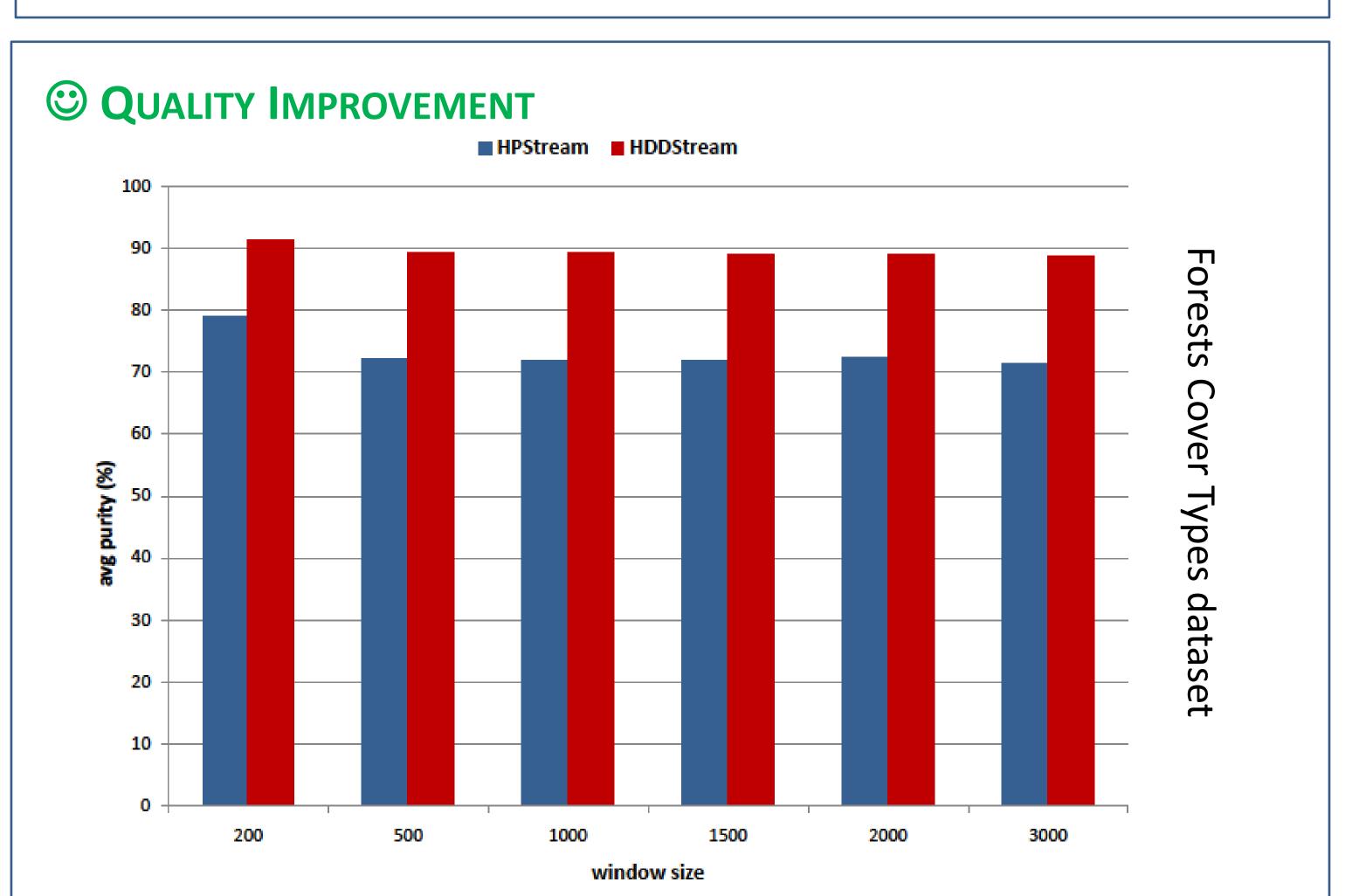
Content summary

- CF1(t),/ CF2(t): temporal weighted linear/square sum of the points
- W(t): sum of points weights

$$\Phi(mc) = \langle \varphi_1, \varphi_2, ..., \varphi_d \rangle$$

Dimension preference vector

- j is a preferred dimension if: $VAR_j(mc) \le \delta$

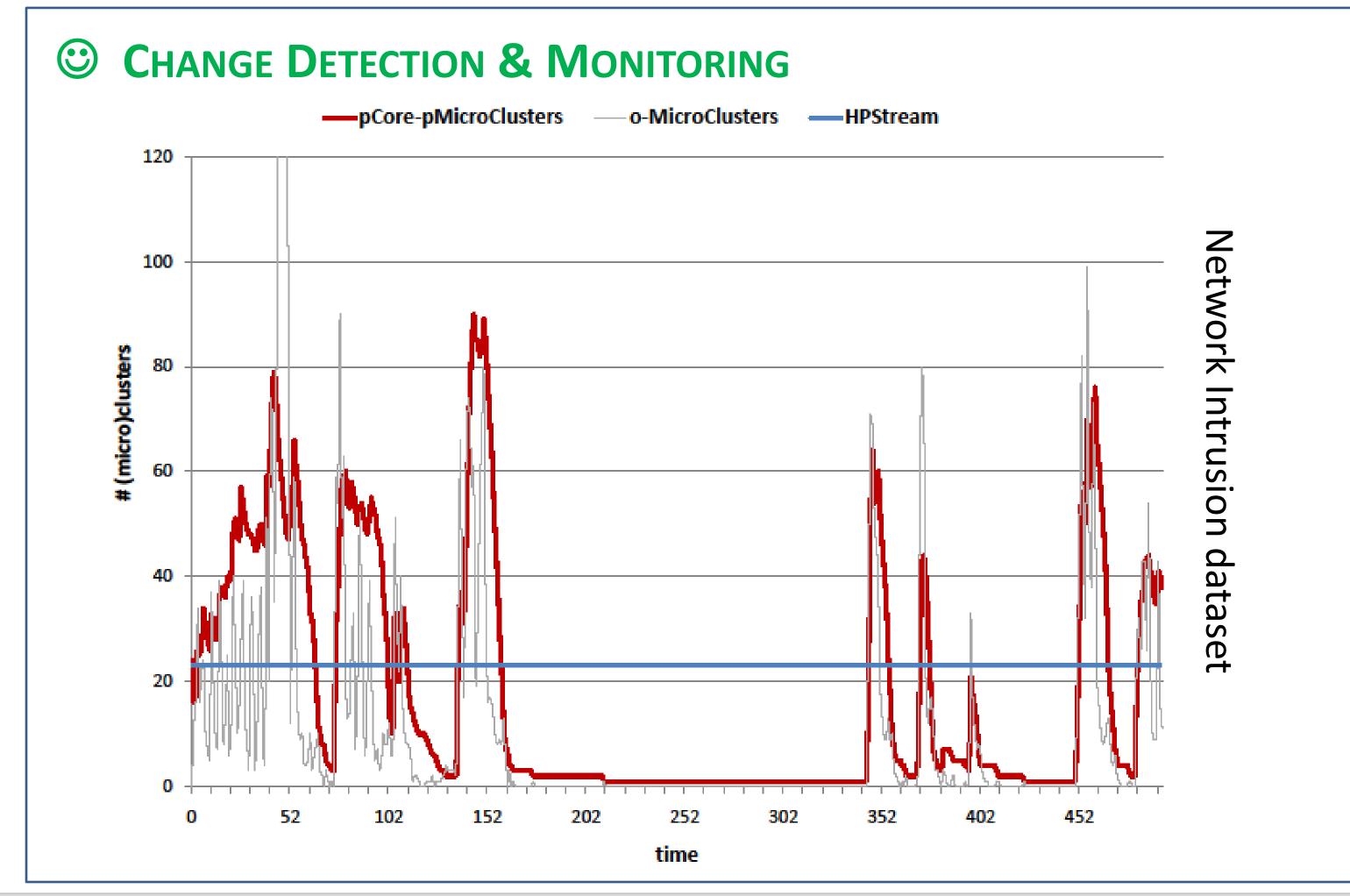


CLUSTERS & OUTLIERS

- Core projected microclusters (Core-PMC):
 - (1) $radius^{\Phi}(mc) \leq \varepsilon$ ($radius\ criterion$)
 - (2) $W(t) \ge \mu$ (density criterion)
 - (3) $PDIM(mc) \leq \pi$ (dimensionality criterion)

The role of clusters and outliers in a stream often exchange:

- Potential core PMC (PCORE-PMC):
 - (1), (2) relax the density criterion $W(t) \ge \theta^* \mu$, (3)
- Outlier MC (o-MC) :
 - (1), (2) relax density criterion $W(t) \ge \theta^* \mu$, (3) relax dim. criterion



EIRINI NTOUTSI¹, ARTHUR ZIMEK¹, THEMIS PALPANAS², PEER KRÖGER¹, HANS-PETER KRIEGEL¹

Information Engineering and Computer Science Department University of Trento, Italy

HIGH DIMENSIONAL & DYNAMIC DATA:

High dimensionality

LMU

- overlapping / irrelevant/ locally relevant attributes
- Dynamic/ Stream data
- only 1 look at the data (upon their arrival) / volatile data
- ! Clustering upon such kind of data is very challenging!!
- both members and dimensions might evolve over time
- Most existing approaches deal with 1 aspect of the problem
- HPStream assumes a constant #clusters over time

OUR SOLUTION (HDDSTREAM):

1st density-based projected clustering algorithm for clustering high dimensional data streams:

- High dimensionality > projected clustering
- Stream data

 online summarize— offline cluster
- Density based clustering → no assumption on #clusters/ invariant to outliers/ arbitrary shapes
- © Quality improvement
- © Bounded memory
- # summaries adapts to the underlying population

PROJECTED MICROCLUSTERS:

For points $C = \{p_1, ..., p_n\}$ arriving at $t_1, ..., t_n$, the summary models both content and dimension preferences of C at t.

$$mc \equiv mc(C,t) = \langle CF1(t), CF2(t), W(t) \rangle$$

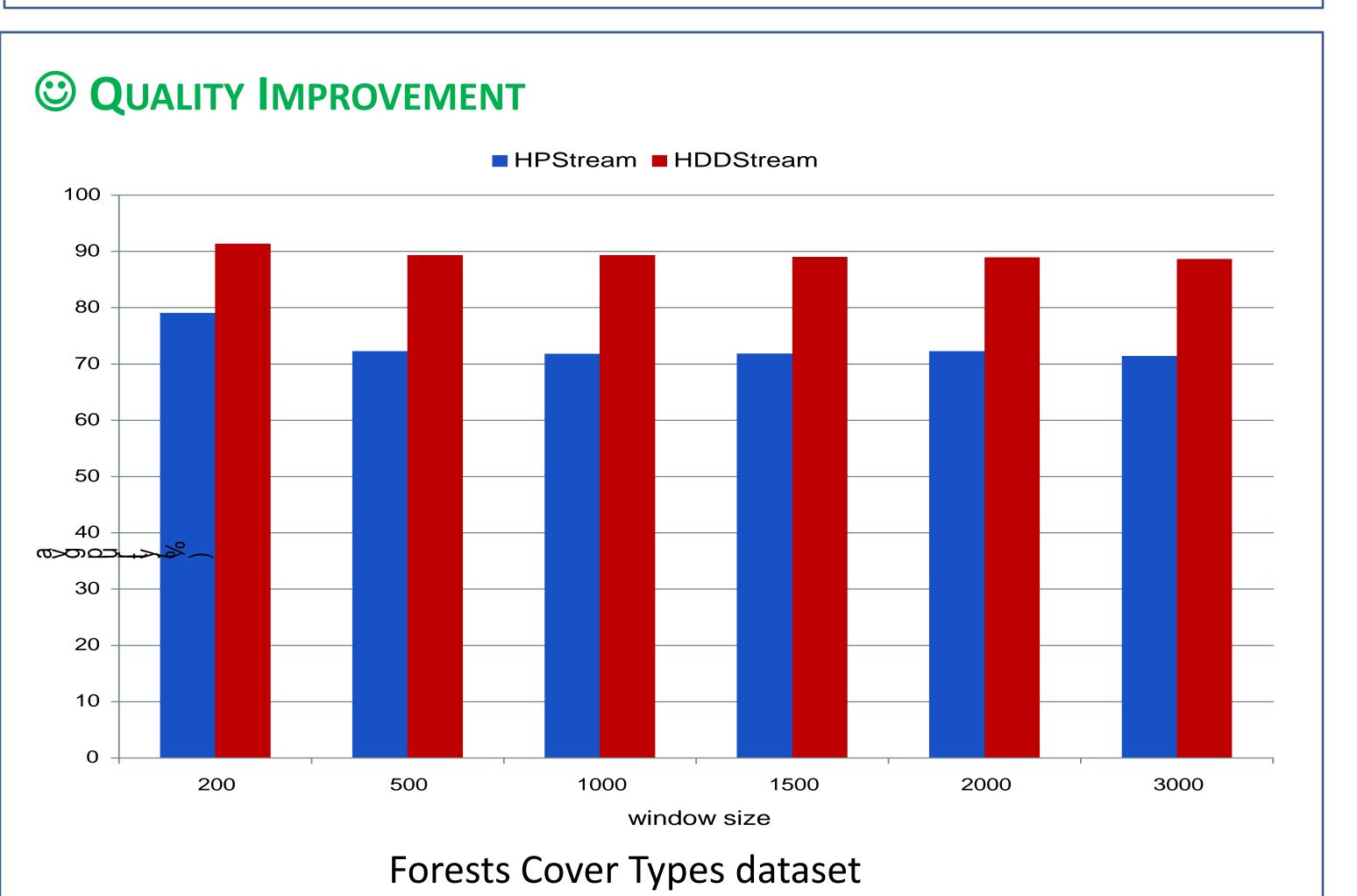
Content summary

- CF1(t),/ CF2(t): temporal weighted linear/square sum of the points
- W(t): sum of points weights

$$\Phi(mc) = \langle \varphi_1, \varphi_2, ..., \varphi_d \rangle$$

Dimension preference vector

- j is a preferred dimension if: $VAR_j(mc) \le \delta$

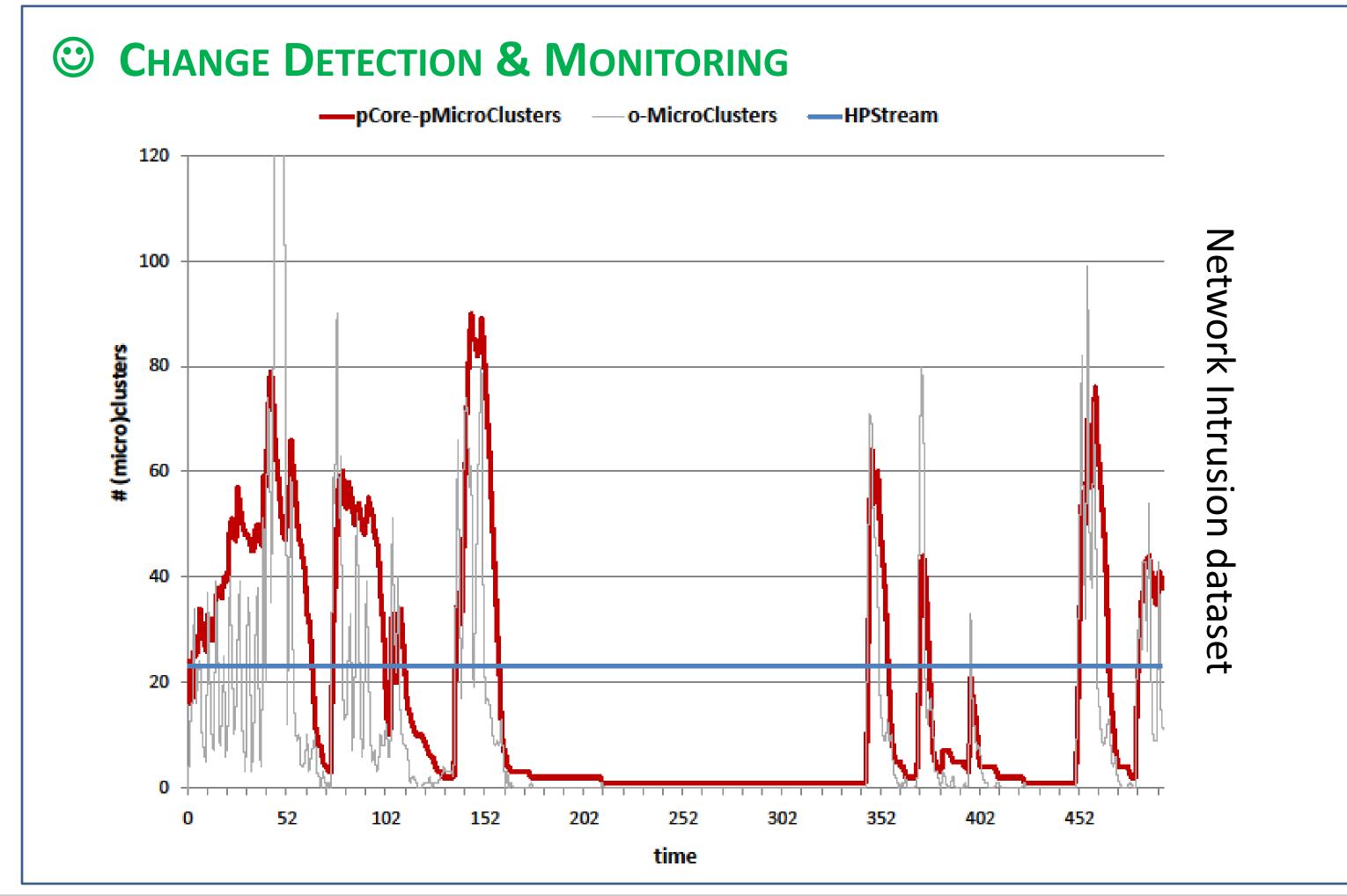


CLUSTERS & OUTLIERS

- Core projected microclusters (Core-PMC):
 - (1) $radius^{\Phi}(mc) \leq \varepsilon$ (radius criterion)
 - (2) $W(t) \ge \mu$ (density criterion)
 - (3) $PDIM(mc) \leq \pi$ (dimensionality criterion)

The role of clusters and outliers in a stream often exchange:

- Potential core PMC (PCORE-PMC):
 - (1), (2) relax the density criterion $W(t) \ge \theta^* \mu$, (3)
- Outlier MC (o-MC):
 - (1), (2) relax density criterion $W(t) \ge \theta^* \mu$, (3) relax dim. criterion



EIRINI NTOUTSI¹, ARTHUR ZIMEK¹, THEMIS PALPANAS², PEER KRÖGER¹, HANS-PETER KRIEGEL¹