Exploring Subspace Clustering for Recommendations

USER BASED COLLABORATIVE FILTERING

Recommendations for a user u are based on the ratings of his/her similar users (Friends F_{μ}).

		1 (Titanic)	2 (Braveheart)	3 (Matrix)	4 (Inception)	5 (Hobbit)	6 (300)
Target user>	Susan	5		5	5	4	د.
	Bill	3	3	?	1		1
	Jenny	5	4	1	1	۰-	4
	Tim	?	٠.	4	4	3	S .
	Thomas Thomas	?	1	1	4	?	4

 $\hat{r}(u,i) = \frac{\sum_{u' \in F_u} sim(u,u') * r(u',i)}{\sum_{u' \in F_u} sim(u,u')}$

Similar users w.r.t. all movies

Existing Approaches on Computing The Set Of Friends F_{ν}

NEAREST NEIGHBORS

 $F_u = \{u' \in U: sim(u,u') \ge \delta\}$ δ is the user similarity threshold

- Friends are defined in the full dimensional feature space
- Linear scan of the DB to compute F_{μ}

FULL DIMENSIONAL CLUSTERING

To speed up friends computation, users are grouped into clusters of similar users $\Theta = \{\theta_1, \theta_2, ..., \theta_k\}, \theta_i \cap \theta_j = 0$. $\mathbf{F}^{\text{clu}}_{i,i} = \{\mathbf{u'} \in \theta_i : \mathbf{u} \in \theta_i\}$

- Faster than nearest neighbors approach
- For each $u,u' \in \theta_i$, $sim(u,u') \ge \delta$ (correctness)
- $F^{clu}_{u} \subseteq F_{u}$ (incompleteness)
 - For small clusters, F^{clu}_u too narrow

DIVERSIFICATION OF THE SET OF FRIENDS

For both cases, user similarity is evaluated in the full (high) dimensional feature space

- Its difficult to find similar users when so many dimensions are considered Its more probable for users to exhibit similarity *in some subspace* of the feature space
- e.g., similar taste in comedies but not in dramas

SUBSPACE CLUSTERING BASED RECOMMENDATIONS

- Clusters are defined in subspaces of the original feature space: $\theta = (U_{\theta}, I_{\theta})$
- Subspace clustering: $\Theta = \{\theta_1, \theta_2, ..., \theta_k\}$
- $-\theta_i$, θ_i might overlap w.r.t. both users and items
- Fault tolerant subspace clustering for dealing with missing ratings
 - Missing values are tolerated but bounded within a cluster per user ($ε_u$), per item ($ε_i$) and in total ($ε_g$).

The friends of a user u are the members of all subspace clusters where u belongs to: $F^{\text{subclu}}_{i,i} = \{u' \in \theta_i : u \in \theta_i\}$

	1 (Titanic)	2 (Braveheart)	3 (Matrix)	4 (Inception)	5 (Hobbit)	6 (300)
Susan	5		5	5	{ 4	? ;
Bill	3	3	?	1	5	1
Jenny	5	4	1	1	5	4
Tim			4	4	3	3
Thomas	?	1	1	4	;	4

Refinement

Similar users w.r.t. movies 1,2

Similar users w.r.t. movies 3,4

Similar users w.r.t. movies 5,6

Tradeoff in exec time & # friends

Better quality of recommendations

WEIGHTED FULL DIMENSIONAL RANKING

- Rank the users in F^{subclu}_u based on their full dimensional distance to u
 Weight by #shared dimensions
- Select the most prominent ones