Neurocomputing 150 (2015) 318-330

journal homepage: www.elsevier.com/locate/neucom

Contents lists available at ScienceDirect

NEUROCOMPUTING

Neurocomputing

NEUROCOMPUTING
LETTERS

Discovering and monitoring product features and the opinions
on them with OPINSTREAM

@ CrossMark

Max Zimmermann ?, Eirini Ntoutsi®, Myra Spiliopoulou **

2 Otto-von-Guericke University of Magdeburg, Magdeburg 39106, Germany

b Ludwig-Maximilians-University of Munich, Germany

ARTICLE INFO

Article history:

Received 4 January 2014
Received in revised form

20 March 2014

Accepted 1 April 2014

Available online 23 October 2014

Keywords:

Opinion mining

Product feature extraction
Stream classification
Stream clustering

Stream mining

Data mining

ABSTRACT

Opinion stream mining encompasses methods for monitoring and understanding how people's attitude
towards products changes over time. For many applications, though, not only a specific product is of
interest but also the properties that people consider important for the whole category of products.
Understanding which product features influence a buyer's choice positively or negatively allows decision
makers to make well-informed decisions on improving their products or marketing them properly. In this
study, we propose OPINSTREAM, a framework for the discovery and polarity monitoring of implicit
product features deemed important in the people's reviews on different products. Our framework
encompasses stream clustering, extraction of product features from the clusters, cluster adaptation and
semi-supervised sentiment learning inside each cluster. These components build upon our earlier work on
product feature discovery and monitoring (M. Zimmermann, E. Ntoutsi, Z.F. Siddiqui, M. Spiliopoulou, H.-P.
Kriegel, Discovering global and local bursts in a stream of news, in: Proceedings of the 27th Annual ACM
Symposium on Applied Computing, SAC'12, ACM, 2012., M. Zimmermann, E. Ntoutsi, M. Spiliopoulou,
Extracting opinionated (sub)features from a stream of product reviews, in: Proceedings of the 16th
International Conference on Discovery Science (DS'2013), Lecture Noteson Computer Science, vol. 8140,
Springer, Singapore, 2013, pp. 340-355., M. Zimmermann, E. Ntoutsi, M. Spiliopoulou,Adaptive semi
supervised opinion classifier with for getting mechanism (to appear), in: Proceedings of the 29th Annual
ACM Symposium on Applied Computing, SAC'14, ACM, 2014. ), with emphasis on smooth cluster
adaptation. We report on the performance of OPINSTREAM on two real datasets with product reviews,
whereby we evaluate both the stream clustering approach for product feature monitoring and the semi-
supervised polarity monitoring method.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

detecting new topics/features as they start becoming important in
the product reviews, while making sure that the whole set of

In e-commerce applications, opinion mining is used to understand
the attitude of people towards products, while opinion stream mining
is used to monitor how this attitude changes with time. Especially for
complex products or services, the expressed opinions are dictated
by the importance people assign to specific features, e.g. a hotel's
location or a camera's weight. We propose the framework OPIN-
STREAM for the discovery of product features in opinionated product
reviews, and the monitoring of those features' polarity over time.

Feature discovery and polarity monitoring is a dual problem.
The discovery of product features is an unsupervised task, for
which the stream of product reviews must be partitioned into
topic clusters, as investigated e.g. in [4,5]. The challenge lays in

* Corresponding author. Tel.: +49 391 67 58967.
E-mail address: myra@iti.cs.uni-magdeburg.de (M. Spiliopoulou).
URL: http://www.kmd.ovgu.de/Team/Academic+Staff/Myra+Spiliopoulou.html
(M. Spiliopoulou).

http://dx.doi.org/10.1016/j.neucom.2014.04.079
0925-2312/© 2014 Elsevier B.V. All rights reserved.

discovered features evolves smoothly from one moment to the
next and can thus be monitored in a comprehensive way.

The monitoring of the features' polarity is a supervised learning
task, for which labeled reviews are needed. The challenge lays in
learning under concept drift, as people's attitude to some product
features changes over time [6,7]. Supervised learning on the
stream of reviews must take into account that up-to-date labeled
reviews cannot be available - it is impractical to expect that a
human expert inspects and categorizes arriving reviews as positive
or negative, especially in an infinite data stream scenario. Hence,
polarity monitoring must be performed on an initial seed of
labeled documents, notwithstanding the fact that the concept
reflected in these documents may change due to drift.

Our framework OPINSTREAM is an integrated solution to the
challenges of discovering product features and assessing their
polarity in the dynamic context of a stream of reviews. OPIN-
STREAM encompasses an adaptive stream clustering method that


www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2014.04.079
http://dx.doi.org/10.1016/j.neucom.2014.04.079
http://dx.doi.org/10.1016/j.neucom.2014.04.079
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.04.079&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.04.079&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2014.04.079&domain=pdf
mailto:myra@iti.cs.uni-magdeburg.de
http://www.kmd.ovgu.de/Team/Academic+Staff/Myra+Spiliopoulou.html
http://dx.doi.org/10.1016/j.neucom.2014.04.079

M. Zimmermann et al. / Neurocomputing 150 (2015) 318-330 319

derives product features at two levels of granularity, adding new
features and forgetting those becoming outdated as the stream
progresses. Each cluster corresponds to a product feature, the
polarity of which we learn with a within-cluster stream classifier.
To deal with the absence of up-to-date labeled documents, we use
the semi-supervised stream classifier proposed in [3] which only
uses a seed of labeled documents as an input and thereafter adapts
with self-learning.

This work is based on our earlier works [2,3]. In [2], we propose
an adaptive stream clustering algorithm for the discovery and
adaptation of product features, coupled with a static within-
cluster classifier that learns the polarity of each feature. In [3],
we replace the static classifier with a semi-supervised stream
classifier that labels documents and assigns them to the training
set. In this work, we formalize the framework of [2,3], specifying
its components and workflow, we extend [2] with a more
elaborate strategy for the treatment of reviews that do not fit into
the clusters, and we perform more extensive experiments. The
experiments concern both the extended stream clustering algo-
rithm and the semi-supervised stream classifier [3] that builds
upon it (rather than upon the stream clusterer in [2]).

The paper is organized as follows. In Section 2, we discuss related
work on feature discovery and polarity monitoring over a stream of
reviews. In Section 3, we first give an overview of OPINSTREAM.
Then, we introduce the basic concepts; contents come from [1-3]. In
Section 4, we describe the core algorithms and show how we use
them to derive an initial polarized hierarchy of product features; this
content comes mostly from the original approach [2]. In Section 5,
we introduce a new method for smooth hierarchy adaptation. In
Section 6, we present polarity learning over the stream of reviews;
content comes from [3]. We report on our experiments in Section 7.
Section 8 concludes the study with a summary and outlook.!

2. Related work

For the extraction of product features on a static set of reviews,
scholars mainly consider nouns: Mukherjee et al. [8] consider all
nouns in the reviews; a feature is a noun, relationships among nouns
are relationships among features. Moghaddam and Ester [9] define a
feature as a frequent itemset of nouns, discovered by a priori at
document and paragraph levels. Zhu et al. concentrate on multi-term
expressions [10]. Long et al. begin with a set of “core” words and
extend it gradually by computing the distance of other words in them;
a set of proximal words constitutes a feature. We also concentrate on
nouns. We define a “feature” as a cluster centroid and refine clusters
into subclusters, so that a feature is refined into a set of subfeatures [2].

The discovery of the product features in a stream of product
reviews translates into a text stream clustering task, where a
“feature” is the descriptor (usually: centroid) of a cluster. The early
text stream clustering algorithm of Aggarwal and Yu [4] keeps the
number of clusters constant, so that a feature (defined in [4] as a pair
of word vectors, which describes a cluster) is replaced by a new one
as the cluster evolves. Liu et al. [5] also maintain a fixed number of K
clusters but use multiword phrases as cluster descriptors. Evolution-
ary algorithms [11,12] enforce a smooth change of the clusters as new
reviews arrive. Sebag et al. [ 13| maintain a “reservoir” of outliers and
perform a statistical test to decide whether the clusters must be
rebuilt to accommodate the outliers. In [1,2], we also treat docu-
ments that cannot be accommodated into clusters as outliers; we
maintain them into “containers”, but we adjust the clusters' centroids
as new documents arrive and old ones are forgotten; hence a

! Throughout this paper, we use the term “feature” for “product feature” and
not for the words constituting the feature space. Instead of the expression “feature
space”, we use the expression “set of dimensions”.

document that was originally an outlier may later “move” closer to
a cluster's centroid.

Stream clustering algorithms on texts usually assume that the set
of dimensions (be they words or multi-word terms) is fixed and
known a priori. This is not the case in streams of reviews, because
people can freely use previously unseen expressions, including
made-up words, acronyms and jargon. Our earlier cluster evolution
framework MONIC [14] and its followups for cluster evolution
description [15] and for text stream monitoring [16] allow for an
evolving set of dimensions, adding new words and forgetting
obsolete ones. Among dynamic topic modeling methods, there are
also few that allow for changes in the set of dimensions [17,18].

Our earlier text stream clustering algorithm TStream [1] builds
a two-level hierarchy of topics, which are modified with recluster-
ing to allow for global bursts in the news (upper level of the
hierarchy) and for local bursts inside a topic (single cluster in the
lower level of the hierarchy). In [2], we have extended TStream
towards opinion stream monitoring, by taking account of the
reviews' polarity and by mapping cluster descriptors into product
features — while keeping the two-level hierarchy. The framework
MONIC allows for changes in the set of dimensions [14,1,2] allow
for changes in the set of dimensions. However, this is done by re-
computation of the set of dimensions, re-vectorization of the
reviews w.r.t. the new dimensions and re-clustering. This is a very
expensive step that should be done only to prevent serious
performance deterioration. OPINSTREAM has a more elaborate
strategy for cluster adaptation.

The stream classification problem for opinionated texts has
been investigated in [6,7], where a framework for sentiment
analysis over a stream of tweets has been proposed. Similarly to
most stream classification approaches, this framework assumes
that the labels of the opinionated documents arrive soon after
label prediction; the change detection and classifier adaptation
components of [7] build upon this assumption. However, enforcing
this assumption is impractical, because it implies the availability of
a human expert that inspects all arriving reviews. There are two
approaches to this problem, active stream learning [19] and semi-
supervised stream learning, which builds upon the earlier concept
of “self-learning” [20]. We opt for semi-supervised stream learn-
ing, because active stream learning still requires continuous
human involvement.

Semi-supervised stream learning is used by Silva et al. [21]:
they require only a small number of labeled documents, on which
they train a classifier based on association rules; then, they update
this initial training dataset incrementally with new documents,
the label of which is derived by the classifier. Drury et al. [22] also
use self-training to extend the initial training dataset, but they
assume a static setting. In [3], we propose a semi-supervised
stream classifier for opinionated documents under concept drift:
similarly to the methods of [21,22], it expands the training dataset
with new documents, but it also forgets old documents, so that the
training set grows and shrinks with time; this allows for a better
response to concept drift. In OPINSTREAM we invoke the semi-
supervised classifier [3] within each cluster.

3. Basic concepts and overview of OPINSTREAM

We study a stream of product reviews. We organize the stream
in batches of fixed batchSize arriving at distinct timepoints
to, t1, ..., ti, ..., so that t; marks the arrival of the ith batch. A review
d in a batch is a document represented by the bag-of-words model,
i.e. the ordering of the words in the review is ignored whereas for
each word w; e d its frequency f}i is stored.

From this stream we extract and maintain a two-level hierarchy
of product features and their associated polarities over time: we



320 M. Zimmermann et al. / Neurocomputing 150 (2015) 318-330

OPINSTREAM_clusterer:

1. Maintains a two-level hierarchy of clusters

2. Maintains a single global container and one
local container per first level cluster

3. Identifies important reviews in each cluster

4. Decides whether a container should be
merged with its cluster (and how)

OPINSTREAM_polarityLearner:

1. Trains a classifier on the
training set

2. Propagates the polarity of
the reviews in each cluster to
the "feature" represented by

5. Computes the "feature" represented by the the cluster
3. Adds useful reviews to the
cluster ds
6. Invokes the training set )
OPINSTREAM_polarityLearner 4. Removes old reviews from

inside each cluster the training set

Fig. 1. The two core functionalities of OPINSTREAM for discovering and monitoring
product features and their polarities.

first present the core functionalities of OPINSTREAM and then
introduce basic concepts. This section finishes with the OPIN-
STREAM components and workflow.

3.1. Core functionalities of OPINSTREAM

OPINSTREAM encompasses two core functionalities: adaptive
unsupervised learning of the implicit product features and adaptive
semi-supervised learning of the polarities of these features. The first
functionality is undertaken by our adaptive stream clustering
algorithm OPINSTREAM_clusterer (cf. Fig. 1, left part): it learns
and maintains a two-level hierarchy of clusters (step 1), where a
cluster corresponds to a “product feature” - a set of representative
words derived from the cluster's centroid (step 5); to allow for
emerging features, it maintains reviews that do not fit into the
clusters in “containers” (step 2) and decides regularly whether
container contents should be merged into the clusters (step 4). To
make sure that the words representative of each “product feature”
are captured, the algorithm identifies “important reviews” inside
each cluster (step 3) and considers only the words in these reviews to
re-build the set of dimensions during cluster maintenance (step 1).
The concepts used by the OPINSTREAM._clusterer (including “feature”
(product feature) and review importance) are presented in Section
3.2 hereafter, while OPINSTREAM_clusterer itself is described in
detail in Section 5.

The second functionality, semi-supervised stream classification,
is undertaken by our OPINSTREAM_polarityLearner (cf. Fig. 1, right
part), which is invoked inside each cluster (step 6 of OPIN-
STREAM_clusterer in Fig. 1). The OPINSTREAM_polarityLearner
encompasses the following steps: a polarity classifier is trained
inside each cluster of the first and of the second hierarchy levels
(step 1). Once the classifier has assigned labels to all reviews in a
cluster, the dominant label in the cluster is propagated to the
product feature as its polarity (step 2). For training, we assume an
initial seed set S of reviews labeled on polarity; as new reviews
arrive, the algorithm uses the learned classifier to assign labels to
them and then selects those reviews that it considers “useful” for
adaptive learning and adds them to the training set (step 3); it
thus learns in a semi-supervised way. To make sure that old
reviews do not influence the classification task, they are regularly
removed from the training set (step 4). The concepts used by the
OPINSTREAM_polarityLearner (including “feature polarity” and
“review age”) are presented in Section 3.2, while the learner itself
is presented in Section 6.

3.2. Definitions and notation
In OPINSTREAM we observe recent reviews as more important

for model learning than old ones. We use the concept of review
age to model the recency of a review.

Definition 1 (Review age). The age of a review r is the average age
of all words w; contained in r:

1
agen) =1 Y exp(—4- (t—tw) (€]

wier
where t is the current timepoint, t,, is the time of the most recent
review that contains w; and 1 e R (1 > 4 > 0) is a decay factor that
determines how fast the old reviews are forgotten.

Note that old reviews are weighted less and forgotten, not only by
the OPINSTREAM_clusterer (as usual in stream clustering) but also
by the OPINSTREAM_polarityLearner (cf. Fig. 1, right part, step 4,
further explained in Section 6).

We define the importance of a review with respect to a set of
reviews by measuring how well the review represents the specific
set.

Definition 2 (Review importance). Let R be a set of reviews. We
define the importance of a review r e R with respect to R as the
number of reviews in R that have r among their k nearest
neighbors, whereby the reviews are weighted on their age

importance(r,R) = Y age(r;) - isSRevNeighbour(r, i, R) 2)

rieR
where

1, reNN(k, i, R)

isRevNeighbour(r,r;,R) = { 0 otherwise

and NN(k, r;, R) is the set of k-nearest neighbors of r; in R, where we
use cosine similarity as the similarity function.

As in [2], we rank reviews on importance and introduce a
review importance threshold . Then, we denote the subset of
important reviews subject to threshold /3 as E < R. For simplicity,
we use the notation R over Ry. The reviews are vectorized (after
applying TF-IDF) on the set of dimensions Dg. Then clustering is
performed, partitioning the batch into first level clusters and,
respectively, partitioning each first level cluster into second level
clusters. For a cluster ¢ c R we define the “polarized feature” as
follows (from [2], with modified notation).

Definition 3 (Polarized feature). Let R be a set of reviews labeled
on polarity. Let R = R be the set of important reviews, and let D be
the set of nouns in R; Dk becomes the set of dimensions, on which
we vectorize the reviews. Further, let {; be the set of clusters over
R and let c e { be a cluster. The “polarized feature” represented by
c consists of

® the centroid < wq,ws,...,Wp, >, where w; is the average TF-
IDF weight of noun word k; € Dg,i=1...|Dg|,

® the polarity label cP'“%, defined as the majority class label
among the reviews in c.

Since we have a two-level hierarchy, polarized features of the first
level correspond to product features, while polarized features of
the second level refined features of the first level.

Not all arriving reviews fit into the existing hierarchy. We
define the notion of document novelty with respect to the existing
clusters/features of the hierarchy.

Definition 4 (Review novelty). Let r be a new review. Let R be a
dataset and let £y be a set of clusters extracted from R under the
set of dimensions Dg. Given a similarity threshold d€[0,1], r is
novel with respect to {y if its cosine similarity to the closest cluster
centroid is less than §.2

2 Obviously, the cosine similarity depends on the set of dimensions Dy.



M. Zimmermann et al. / Neurocomputing 150 (2015) 318-330 321

It is obvious that by this definition each outlier is candidate for
novelty. Hence, we need a mechanism to decide whether a specific
review is an outlier or rather indicates an emerging concept (i.e. an
emerging product feature). To make sure that emerging concepts
are not overseen, we store novel reviews in containers. We
associate the first hierarchy level with a global container, which
accommodates reviews that are too far from the centroids of all
global clusters. Each such cluster is further associated with a local
container, which accommodates reviews that are close to its
centroid but far from all centroids of its subclusters (local clusters).
To make sure that outliers are not perceived as emerging concepts,
we provide solutions on (i) quantifying novelty and (ii) regularly
incorporating novel reviews that are not outliers into the hier-
archy. These issues are addressed in Section 5.

3.3. Components and workflow of OPINSTREAM

OPINSTREAM has two components, shown in Fig. 2. The INmiALzaTioN
Comronent (Fig. 2, left part) processes an initial seed of labeled reviews
S and invokes OPINSTREAM_clusterer to build the two-level hierarchy
of features, where a feature is formally defined in Definition 3. As can
be seen from Figs. 2 and 1, the INmuzation CompoNeNT does not invoke
all steps of the OPINSTREAM_clusterer because the stream has not yet
been deployed, hence there is no concept drift yet. For the same
reason, only the supervised learning steps of the OPINSTREAM_polar-
ityLearner are invoked to learn from the labeled S and derive the
polarity of the feature (cf. Definition 3) represented in each cluster.

The Abarration ComponenT deploys the full functionality of the
OPINSTREAM _clusterer and the OPINSTREAM_polarityLearner as the
stream of reviews progresses. The invoked OPINSTREAM_clusterer
exploits the concepts of review age (cf. Definition 1) to reduce the
weight of reviews during clustering, and considers only important
reviews (cf. Definition 2) to specify the set of dimensions inside each
cluster: only words from these reviews are considered for vectoriza-
tion and specification of the centroid and, hence, of the feature (cf.
Definition 3). The adaptation process is described in detail in Section 5.

Unlike the Inmauzation Component, the ADAPTATION COMPONENT
invokes the OPINSTREAM_polarityLearner indirectly, via the OPIN-
STREAM_clusterer (cf. Fig. 1, left part, step 6). It chooses reviews
that are useful with respect to the current concept and adds them,
with their derived labels, in the training set. This set is expanded
as such reviews are added and shrunken again as reviews are
forgotten (because of ageing, cf. Definition 1). The concept of useful
review is interwoven with the mechanism of semi-supervised
forward and backward adaptation, which are described in
Section 6. Informally, the usefulness of a review for learning is
measured on how much it reduces the entropy of the training set
(cf. Definition 7 in Section 6).

In Fig. 3, the two-level hierarchy is depicted and for each level, the
maintained entities are described. The first level of the hierarchy,
consists of K first level clusters and the global container. At the

/Initialization Component: \

1. Invokes

OPINSTREAM framework

OPINSTREAM_clusterer:

Steps 1, 5 only Adaptation Component:

on the initial seed set Invokes

2. Invokes OPINSTREAM_clusterer

OPINSTREAM_polarityLearner:
Steps 1, 2 only

k inside each cluster /

Fig. 2. The components of OPINSTREAM (cf. Fig. 1).

on each arriving batch of reviews

~

Important reviews

Global container

per 1st level cluster

”””””””” v v > Polarized feature
Cluster 1 Cluster Kg Within-cluster classifier
i g
Local Local per 2nd level cluster

container 1 container Kg

Importart reviews

Polarized feature

Within-cluster classifier

\ { Cluster 1.1 } {Cluster 1K } { Cluster kg_1 M[cmster Kg_KI } ‘ J

Fig. 3. Two-level hierarchy built by OPINSTREAM encompassing clusters at each
level and within-cluster classifiers; we explicitly denote the important reviews in
each cluster and the container associated with.

second level of the hierarchy, the second level clusters are main-
tained; there are K; clusters for each first level cluster, and K local
containers, each accommodating documents that are close to the
related first level cluster centroid but far from all centroids of the
corresponding second level clusters. Each cluster in the hierarchy is
described in terms of its important reviews as cluster members,
polarized feature as centroid and the cluster specific classifier derived
from the cluster members.

Fig. 4 shows the complete workflow of OPINSTREAM, including
the initialization (left upper part) and the adaptation (right part).
In the left upper part, we see the steps of the OPINSTREAM_clus-
terer and OPINSTREAM_polarityLearner for the initial seed of
reviews S. Below that box we see the flow of reviews into the
training set; these are useful reviews (see right lower part of Fig. 4)
selected by OPINSTREAM_polarityLearner from the batch of
reviews arriving at each timepoint. The upper right part depicts
the tasks performed by OPINSTREAM_clusterer (and the invoked
OPINSTREAM_polarityLearner) on each review, namely assign-
ment to a cluster or a container. The adaption of the hierarchy,
including merges clusters with their containers, is depicted in the
lower right part. This workflow is described in the next sections,
starting with the initialization in Section 4.

4. Extracting an initial hierarchy of polarized features

The Inmiauization CompoNenT of OPINSTREAM invokes first the
OPINSTREAM _clusterer to build a two-level hierarchy of clusters
on the initial seed set S (cf. Fig. 2, left part, step 1). We assume that
the reviews in S are labeled, so we use them to learn an initial
polarity classifier for each cluster (cf. Fig. 2, left part, step 2). Those
two initialization steps are described below.

4.1. The core of the OPINSTREAM_clusterer

Our adaptive stream clustering algorithm partitions the set of
reviews into Kg global clusters (first hierarchy level) and then
partitions each global cluster into K; local clusters (second hier-
archy level). It uses fuzzy c-means, applying it on an elaborately
derived set of dimensions at each level.

4.1.1. Specifying the set of dimensions

The specification of the set of dimensions for clustering is a
core activity for our clustering approach: instead of considering all
reviews, we concentrate on important ones. For the set of reviews
R, we extract (at initialization and at each later timepoint) the
subset of important ones R (cf. Definition 2 and following text)
subject to threshold /. We then define the set of dimensions Dy as
the set of all nouns in R, vectorize the reviews using TFIDF



322

M. Zimmermann et al. / Neurocomputing 150 (2015) 318-330

/ Initialization of polarized

Polarized feature hierarchy maintenance

feature hierarchy
Clustering

For each 1st level cluster c
and related container b

For each review

Derive the feature
represented by each cluster

|

‘ Train polarity classifier ‘

\ per cluster /

Merge b to c,while
keeping feature

space of ¢
fatigue=>vy @ fatigue<y

Global
reclustering

Local
reclustering

Backward Adaptation

-

‘ Importance book keeping ‘

polarized
features

!

‘ Retain only important reviews ‘

‘Select useful reviews ‘ ‘Update cluster centroids‘
,,,,, T

¢

Fig. 4. The workflow of OPINSTREAM.

weighting and build the first level of clusters. For each cluster c,
we again identify the subset of important reviews ¢ and derive
similarly the set of dimensions D.. We then vectorize the reviews
in ¢ and partition it into K; subclusters (second level).

4.1.2. Deriving a cluster's feature

Once the clusters at both hierarchy levels have been built, we
derive the polarized feature represented by each cluster as the
cluster's centroid, according to Definition 3. For a first level cluster
¢, the centroid' words come from Dg; for a second cluster ¢’ below
a first level cluster c, the centroid's words come from D, i.e. they
are specific to the parent cluster c. In both cases, the polarity of the
feature is the dominant polarity among the reviews in the cluster.

4.1.3. Assigning an arriving review to a cluster or a container

After the initialization phase, each incoming review r in the
current batch must be placed in the hierarchy. The OPINSTREAM_-
clusterer checks whether it fits the existing hierarchy by assessing
its novelty (cf. Definition 4), first with respect to the global clusters
(first hierarchy level). If the review is novel, i.e. it is further from
any global cluster centroid than the global similarity threshold &,
then r is assigned to the single global container of the first level. If
rather r fits to a global cluster ¢, we perform the novelty check
again for the second level clusters to which c is partitioned.

It is noted that we use a local similarity threshold &, for the
second level clusters. This threshold may (but need not) have the
same value than the global similarity threshold, owing to the fact
that the cardinality of the second level clusters is much smaller
than the cardinality of the first level clusters. If r fits to no local
cluster, it is assigned to the local container of cluster c. If r is
assigned to a second level cluster, then this cluster's centroid is
updated by recomputing the TF-IDF values of those words from D,

that are also contained in r; and by computing the TF-IDF values of
words that are only contained in r.

4.2. The basic learner for OPINSTREAM_polarityLearner

Our basic learner for polarity classification is Multinomial Naive
Bayes (MNB) [23]. The probability of a class ¢ given a document
d is given as

POTT ,Pwilc)

3)
where P(c) is the prior probability of class ¢, P(w;|c) is the
conditional probability of word w; belonging to class ¢ and f¢ is
the number of occurrences of w; in document d. All these
quantities can be easily estimated from the training set, i.e., the
initial seed set S in our case.> The class prior P(c) equals to the
fraction of the seed set documents belonging to class c. The
conditional probability P(w;|c) is given by

NjC—I—]

SN+ 1V

P(wlc) = “4)

where N;. is the number of occurrences of the word w; in
documents of class ¢ and V is the vocabulary of distinct words
built upon the seed set S. Finally, P(d) is the probability of
observing document d. In our case, we consider all documents of
the same importance so the probability is the same for all
documents. To avoid the zero-frequency problem, we use the
Laplacian correction that initializes all counts to one instead of
zero. The document d is assigned finally to the class c¢ that

3 Parameter estimates are indicated by a “hat” (" ).



M. Zimmermann et al. / Neurocomputing 150 (2015) 318-330 323

maximizes the conditional probability P(c|d). The learned MNB
classifier built upon the seed set S is denoted by A(S).

The InmiaLization CompoNENT invokes MNB as part of the OPIN-
STREAM_polarityLearner inside each cluster to learn a cluster-
specific model of the reviews in the cluster (cf. step 1 of OPIN-
STREAM_polarityLearner in Fig. 1). Then, the polarity of the feature
represented in the cluster is derived as the polarity of the majority
of the reviews in the cluster (cf. Definition 3). In the INTIALIZATION
ComponenT, the invocation of OPINSTREAM_polarityLearner ends at
this point (cf. step 2 of OPINSTREAM_polarityLearner in Fig. 1). The
modification of the training set by adding and removing reviews
(cf. steps 3 and 4 of OPINSTREAM_polarityLearner in Fig. 1) is only
invoked by the Apaprtation Component. The adaptation workflow is
described in the next two sections.

5. Adapting the evolving hierarchy of features

The Apaptation ComPONENT invokes the complete set of function-
alities of our OPINSTREAM_clusterer for cluster adaptation. Adap-
tation is done at each timepoint t; on the current batch (containing
batchSize reviews) from the stream.

We introduce a new adaptation approach that, differently from
[2], adapts the hierarchy smoothly - modifying the product
features as rarely as possible.

5.1. Rationale of the new approach

As pointed out in the closing sentences of Section 3.2, the
OPINSTREAM_clusterer within the Apaptation CoMPONENT must adapt
the cluster hierarchy when enough novelty has been detected. The
critical questions are (i) how to quantify adequate novelty in the
arriving reviews and (ii) how to incorporate novel reviews in the
existing hierarchy.

Regarding question (ii), we should first consider the possible
implications of incorporating novelty into the existing hierarchy.
In the simplest case, a review is simply assigned to a cluster or, if it
is novel, to a container, as explained in the last part of Section 4.1.
If a sufficient number of novel reviews (cf. question (i) below) have
been accumulated in a cluster's container, then it is reasonable to
re-structure the cluster, taking them into account (local recluster-
ing). Alternatively, the whole hierarchy could be re-constructed
from scratch (global reclustering). Global reclustering implies that
the product features derived and monitored thus far are replaced;
this is undesirable, because it forces the human observer to study
and comprehend the attitude of people towards new features.
Hence, global reclustering makes only sense if the stream of
opinions has undergone drastic changes.

When is the number of novel reviews “sufficient” (cf. question
(i)) to justify local, or even global reclustering? In [1], we
quantified sufficient novelty through container size; in [2,3], we
held on to that scheme. However, linking novelty to container size
is only sustainable when assuming that the existing clusters and
their containers are far apart from each other. This assumption
may not hold though: as reviews grow older and disappear, and as
the semantics of important reviews inside the clusters may
change, the clusters and their containers may “start moving
towards each other”. In such a case, a reclustering is not always
necessary; it may be sufficient to merge a cluster ¢ with its
container b, possibly without even changing the product feature
represented by c. Thus, we consider the following strategies:

Merge Strat- Merge b and c, while preserving the set of dimen-
egy I: sions in c, D, vs.

Merge Strat- Merge b and c, and recompute a new set of dimen-
egy II: sions D, from the contents of both ¢ and b.

To decide whether a merge is beneficial, and which merge option
should be used, we compute the quality of the model before and
after the anticipated merge action. We propose a quality indicator
based on cluster description length (cf. Section 5.2), and model the
two merge strategies on the basis of this indicator (cf. Section 5.3).
We decide between merging and reclustering (cf. Section 5.5) after
quantifying the notion of (human) fatigue as the result of global
reclustering (cf. Section 5.4).

5.2. Description length as quality indicator

As indicator of quality for a cluster (before and after a merge),
given a set of dimensions, we use the notion of Description Length,
first introduced by Rissanen [24]. If P(x) is the probability of
observing the vector of review x, then its Description Length in
bits is DL(x) = —log, P(x).

Definition 5 (Description length of a cluster). Let ¢ be a cluster and
let D, be its set of dimensions. We define the Cluster Description
Length of ¢ given D, as

CDL(c,Dc)= — Y, log, P(r|c,Dc) (5)
rec

where we define P(r|c,D.) as the probability of observing the
vector values of r, formed in the set of dimensions D, inside cluster
c. Lower CDL() values are better.

To compute the probabilities in Definition 5, we first assume that
the words in the reviews inside a cluster are independent given
cluster (the typical naive assumption). We further assume normal
distribution for each word/dimension. Then, the conditional prob-
ability P(r|c,D.) is defined as

P(ric.De)= I Px=vylc) (6)

wernD.

where vy, is the value of the vector of r for word w, i.e. frequency of
w in r. We derive P(x=V],|c) from the cumulative distribution
function Fx() of the normal distribution N'(1,, (65,)?) with mean u5,
and standard deviation o%, of a word w e D, given c. It holds that

Fx(X)=P(X <X) = / ’ f(x) with f(x) = Glﬁe*("*ﬂ)z/k2

for the normal distribution. We set the upper limit of the integral
to x+¢€ where €=0.001 serves as the tolerance value. Hence

P(x =V,|c) ~ P(x+€ < vy, |c)—P(x <V}, |c) 7

By defining the description length of a cluster conditional to a
set of dimensions, we can check whether the merging of a cluster
with its container decreases the CDL() value - depending on
whether the set of dimensions is retained or replaced. The
intuition is that a merge between two sets is beneficial if the
description length of the (one) merged set is smaller than that of
the two initial sets.

5.3. Impact of merging on cluster description length

Using the CDL() (Definition 5), we check the impact of each
merge strategy on the number of bits needed to describe a cluster
after it is merged with its container.

Merge Strategy 1: For cluster ¢ and its container b, this strategy
translates to the question: “Do we gain in quality if we merge ¢
with b, while retaining the set of dimensions D.?”. We quantify
this by applying this strategy under the

Conditional_I : CDL(c|D¢)+ CDL(b|Dy)— CDL(c U b|D.) >0
In this conditional, the set of dimensions D, is derived from the set

of important reviews in ¢, as explained in Section 4.1.1, while the
set of dimensions D, for the container consists of all words in the



324 M. Zimmermann et al. / Neurocomputing 150 (2015) 318-330

container's reviews (since reviews in containers do not have
importance scores).

If Conditional_I is satisfied, then the number of bits required to
describe c U b under D, is less than the number of bits needed to
describe cluster and container separately, i.e. the merge brings a
gain in quality. So, OPINSTREAM_clusterer merges b with ¢ and
updates the centroid of c.

If the conditional is not satisfied, this means that the container
b is far apart from the contents of ¢ with respect to the set of
dimensions of c. Then, we can consider a change in the set of
dimensions, corresponding to the second merge strategy.

Merge Strategy 1I: For cluster ¢ and its container b, this strategy
is invoked if the Conditional_I is not satisfied. Strategy II translates
to the question: “Do we gain in quality if we merge b with ¢ and
use a new set of dimensions, derived from both c and b?” We
quantify this by applying this strategy under the

Conditional_II : CDL(c|D.)+ CDL(b|Dy)— CDL(c U b|D._ ) >0

where the set of dimensions D., contains the words of the
important reviews in ¢ and the words of all reviews in b (and
similarly for Dy).

If Conditional_ll is satisfied, the bits needed to describe c U b
under D, (which is equal to D. U D) are less than those needed
to describe b and c separately. Hence, the merge implies a gain in
quality, so OPINSTREAM_clusterer merges b with ¢, but also
renews the set of dimensions. This results essentially in a new
cluster cu b and to the recomputation of the product feature
represented by the cluster.

5.4. Deciding for hierarchy rebuilds on the basis of fatigue

The replacement of a cluster's set of dimensions is a local, yet
drastic change in the two-level hierarchy, because all reviews in
the affected cluster must be vectorized anew. Also, its product
feature, which was monitored thus far, is replaced. More drastic is
a global reclustering: all reviews must be re-vectorized, and all
product features vanish and are replaced by new ones. Hence, we
have two reasons for keeping the number of (local and global)
reclusterings low: to reduce the computationally expensive re-
vectorization operations and, to reduce the mental effort of the
human observer, who monitors the product feature popularity
over time. To quantify the mental effort caused by such rebuilds of
clusters, we introduce the notion of fatigue.

Definition 6 (Fatigue). Let M(t) be the hierarchy model at time-
point t and n be the number of reviews that are contained in the
clusters of M(t). Also, let M(t)\M(t—1) denote the set of clusters
which were rebuilt at t. We define the fatigue as the percentage of
reviews involved in rebuilt clusters

Ic|
ce M(t)\M(t—1)

fatique = ;.

3)
where |c| is the number of reviews in cluster c.

By this definition, fatigue corresponds to the mental effort a user
has to make to inspect a new part of the two-level hierarchy: the
polarized product features and the reviews associated with them.
In that context, a cluster rebuilt is not limited to a reconstruction of
the set of dimensions only: if a first level cluster is merged with
the global container, then, obviously, all its subclusters must be
rebuild. Thus, cluster “rebuilds” cover all local reclusterings and
the global reclustering that involves all rebuilding the first level as
a whole. The best value for fatigue is 0 (no rebuilds), the worst is 1.

5.5. Adapting the hierarchy with or without cluster rebuilds

At the end of each batch and for each cluster c of the first level,
we first check whether its local container should be merged with
it according to Merge Strategy I: if Conditional_I is satisfied, then
the reviews in the container become part of the cluster and are
subsequently placed to the subclusters of c.

Whenever Conditional_I is not satisfied, we check whether
Merge Strategy II can be applied. However, this strategy implies a
change in the set of dimensions of cluster ¢, and hence an increase
in fatigue. Hence, we identify all first level clusters, for which
Conditional_II is satisfied. These correspond the anticipated cluster
rebuilds, as mentioned in Definition 6: we use them to compute the
expected fatigue and juxtapose its value to a fatigue threshold y:

® |f the fatigue is less than y, OPINSTREAM_clusterer performs
local reclustering: each of the identified first level clusters is
rebuilt, i.e. the set of dimensions is recomputed, the reviews are
vectorized anew and the second level sublclusters are re-
computed from scratch. This implies that the first level feature
of each cluster and all its subfeatures are replaced by new ones.

® [f the fatigue is more than y, OPINSTREAM_ clusterer rebuilds
the whole hierarchy from scratch.

The rationale behind the threshold y is that a large number of local
reclusterings may be ultimately more confusing to the human
expert than the reconstruction of the whole hierarchy.

For clarity, we describe here which part of the stream partici-
pates in a rebuild. In a stream environment, there are different
ways to deal with ageing, namely the landmark window model
that considers everything since the beginning of the stream, the
sliding window model that considers only the most recent history
and the damped window model that assigns some age-dependent
weight on data points so as most recent points count more [25].
Though in our case the stream arrives in batches of fixed sizes, as
in the sliding window model, a hierarchy rebuild does not rely
solely on the reviews within the current batch. Rather, older
reviews are maintained also in the hierarchy either as members
of the hierarchy clusters or as members of their corresponding
containers. The ageing function that characterizes the recency of a
review downgrades old reviews so recent ones are given higher
weights but nevertheless old ones might be still present in the
hierarchy, as long as they are important based on Definition 2.
Therefore, we could describe the adopted window model as a
combination of the sliding window model and the damped
window model. The sliding window model part, which focuses
only on the recent history of the stream, allows us to adapt faster
to changes in the underlying population whereas the damped
window model part, which downgrades older reviews based on
the exponential ageing function, allows us for smoother adapta-
tion over time as the stream history is also taken into account to
the degree of the decay factor A: the higher the value of A, the
lower the contribution of the stream history.

5.6. Updating the age and importance score of reviews

At the end of each batch, we update the age and importance
score of all reviews in a cluster, the same way as done in [2]. In
particular, we update the review age (cf. Definition 1), then use the
updated age values to recompute the k nearest neighbors of each
review. We thus recompute the importance of each review (cf.
Definition 2) and juxtapose it to the review importance threshold 3
(cf. text after Definition 2).

Hence, the set of important reviews for a cluster ¢, ¢, may
change at the end of each batch. To trace these reviews, we
maintain hashmaps: the hashmap of ¢ contains all words



M. Zimmermann et al. / Neurocomputing 150 (2015) 318-330 325

appearing in reviews of ¢ and, for each word, the number of
appearances in ¢ and the timestamp of the most recent appear-
ance. With this hashmap, OPINSTREAM_clusterer identifies very
fast which words do not belong anymore to D. and which are new
in it: the reviews in c are re-vectorized accordingly. It must be
noted that re-vectorization does not imply that the second level
clusters are rebuilt, although a rebuilt might be provoked at the
end of the next batch.

6. Adapting the evolving polarities of the features

The OPINSTREAM_polarityLearner is invoked by the OPIN-
STREAM_clusterer inside each cluster. At an abstract level, this is
done after cluster adaptation (Section 5); in fact, the OPIN-
STREAM_polarityLearner is interwoven with the OPINSTREAM_-
clusterer: as soon as a review is added to a cluster, the
OPINSTREAM_polarityLearner uses the existing cluster-specific
classifier to assign a label to it (cf. Fig. 4, upper right part). Then,
it checks whether this review would be useful for training; if yes, it
adds it to the training set in a process called the forward
adaptation. After fixing the contents of each cluster, occasionally
merging a cluster with its container or even reclustering (cf. Fig. 4,
lower right part), the OPINSTREAM_polarityLearner removes old
reviews from the training set in a process called the backward
adaptation.

6.1. Forward adaptation - incorporating new reviews

We update the initial classifier A(S) by incorporating new
reviews into the seed set S after deriving their labels with A(S).
We use the extended training set S’ to adapt the model into A(S').
To select new reviews for the extension of S, we introduce the
concept of usefulness, which is based on entropy.

Definition 7 (Usefulness). Let d be a new review, to which A(S)
assigns the label c. The usefulness of d is

Usefulness(d)= Y H(S,w;)—H(S U d,w;) 9)

w;e

and d is useful for learning if Usefulness(d) is greater than a
threshold a e (—1,0]: here, H(S,w;) is the entropy of S w.r.t. w;,
which expresses how pure S is w.r.t class when considering only
w;; H(S U d,w;) is the entropy w.r.t. w; when considering d as part
of the seed set, i.e. over the set S U d.

Informally, a review that decreases the entropy difference is useful
because it “boosts” the performance of the old classifier by adding
to S reviews that are very likely to have indeed the label assigned
to them. On the other hand, a review that increases the entropy
difference is also useful: it forces the classifier to adapt to reviews
that are different from those seen thus far. We regulate the
usefulness of reviews with the threshold a e (—1,0): values close
to 0 promote smooth adaptation, since they require that the newly
added reviews in the model agree with the old classifier; values
close to —1 promote diversity.

It is noted that in the usefulness definition we use the entropy
difference over all words w; e d, instead of over all words in S and
S U d. The reason is that d is the only difference between the two
sets. If d is useful w.r.t. the usefulness threshold a, the seed set S is
expanded by d, so the new seed set is S U d. Also, the parameters
of the MNB classifier are updated accordingly based on d. This is an
efficient update, as we need to update only the counts N for all
words w; e d and class label class(d) e C.

6.2. Backward adaptation — weighting reviews by age

Next to forward adaptation, we weight reviews by their age
(cf. Definition 1), so that older reviews have gradually less effect on
the classifier and very old ones get discarded from S.

Further, we incorporate ageing into the MNB basic learner of
the OPINSTREAM_polarityLearner by replacing N;. in Eq. (4) with
Ngged defined as

aged Sl d
N = dz fic - age(d, t) (10)
=1

where the number of occurrences of word w; in d with label c is
weighted by the age of d. Hence, the conditional probability of w;
given class c (Eq. (4)) is replaced by

N+
T NGB+ ¥y sage(d, t)

The parameters y and Y 4. sage(d,t) serve as the Laplace correc-
tion; y is the smallest weight - referring to a review that appeared
at timepoint 0 (beginning of the stream).

When a review d arrives, only the counts of words in d must be
updated, and only for the class of d. So, we update all other word
counts only once per timepoint: we modify the weights of all
reviews by our age function (cf. Definition 1 and Eq. (10)) and then
adjust the counts of each affected word and class.

a1

p(wi|c)aged =

7. Experiments

We evaluate OPINSTREAM in terms of the quality of both the
extracted features and the learned feature polarities. In particular,
we evaluate the OPINSTREAM_clusterer component on the purity of
the clusters it produces, and the OPINSTREAM_polarityLearner
component on the quality of the classifiers it creates in a semi-
supervised way. We present our evaluation measures in Section 7.3.
We run our experiments on two real world datasets (cf. Section 7.1).
We also evaluate the efficiency of OPINSTREAM in terms of its
execution time.

For feature extraction and monitoring, we compare OPIN-
STREAM_clusterer with our earlier stream clustering algorithm
from [2], denoted as ClusteringBaseline. For feature polarity
learning, we compare with the non-adaptive semi-supervised
classifier of [2], denoted as PolarityBaseline hereafter, and also
with the method of Silva et al. [21], denoted as Silva hereafter.

7.1. Datasets

For the evaluation, we use two datasets of opinionated (positive
and negative) reviews, denoted as D1 and D2 hereafter. To distinguish
between the implicit product features discovered by OPINSTREAM
according to Definition 3 and the explicit features in the datasets, we
use the term product property or simply property for the latter.
Obviously, a feature (which is described by words with probabilities)
cannot be exactly matched with a property; a semantic matching can
only be done manually.

Stream D1 is derived from the dataset of opinionated reviews [26],
as in [2]. In particular it is derived by sorting the reviews so as to
deliver all 38 features within the first 220 reviews, as stream1 in [2].
D1 contains 481 reviews on nine products, where each review refers
to one explicit product feature out of 38 total and is associated with
positive/negative polarity. The stream was partitioned in ca. 10 batches
of 50 reviews (cf. Table 1, first line, first column).

The number of properties per batch is depicted in Fig. 5; most
of the properties appear in between 5 and 30 reviews, i.e. there is
no property which occurs in all reviews. It is stressed that the



326

Table 1
Parameter settings.

M. Zimmermann et al. / Neurocomputing 150 (2015) 318-330

Parameter settings used on both datasets in all experiments

Batch size Ageing factor 2 # Nearest neighbors k

Threshold g on review importance  Threshold y on fatigue® Initial seed

Experiment 50 0.5 4

Parameter settings used on D1

0.6 0.3 D1:100; D2:500

Thresholds for first level clusters

Thresholds for second level clusters

# Clusters K; ~ Similarity &¢ Container size® o, # Clusters K; Similarity & "Container size o
Cluster purity 2 0.1 100 2 0.2 15
Polarity learning 2 0.6 100 6 0.7 15
Exectime I (Table 2) 2 0.6 100 6 0.7 15

Parameter settings used on D2

Experiment Thresholds for first level clusters Thresholds for second level clusters
# Clusters K;  Similarity &g Container size” o, # Clusters K| Similarity & Pcontainer size o
Cluster purity 9 0.1 500 9 0.2 150
Polarity learning 6 0.2 500 6 0.3 150
Exectime I (Table 2) 2 0.6 500 6 0.7 150
Exectime II (Fig. 13)  Varied 0.3 500 Varied 0.4 150
2 Denotes parameters used only by OPINSTREAM.
b parameters used only by ClusteringBaseline, resp. PolarityBaseline.
30 1
4
S 0.9
a 27
G 2 os
o 2
H £
2 0.7
§ 24 w
0.6
2
o 21
# . . . . . , . . 0.5
1 2 3 a 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Number of Batch

Fig. 5. Stream D1: the number of properties per batch.

batches are ordered, so the algorithms will encounter a slightly
increasing number of properties after the fourth batch. In Fig. 6,
we show the entropy distribution per batch, where we compute
entropy with respect to the polarity of reviews. An entropy value
of 1.0 means that the reviews in the batch are uniformly dis-
tributed with respect to the classes, while an entropy of 0.0 means
that all reviews in the batch are of the same class. We see that the
entropy is close to 1, i.e. there is a mix of positive and negative
reviews in each batch.

Stream D2 comes from a dataset first introduced by Yu et al. in
[27], which contained data crawled from cnet.com, viewpoints.
com, reevoo.com and gsmarena.com. From these data we use only
reviews that describe a single feature, after removing very short
reviews (those containing less than two adjectives or two nouns).
The final stream D2 contains 12,825 reviews on 327 properties
with positive/negative polarities.* We use the timestamps of the
reviews to build ca. 240 batches, each one containing 50 reviews
(cf. Table 1, first line, first column). As for stream D1, we show the
number of reviews per batch in Fig. 7 and the entropy per batch in
Fig. 8. We see that the number of properties varies strongly from
one batch to the next, which will make adaptation challenging for
all algorithms. Entropy follows the same non-smooth pattern, its
values are rather high, in the [0.7-1] range, indicating that the

4 Available at http://omen.cs.uni-magdeburg.de/itikmd/cms/upload/Datasets/
D2.zip

Number of Batch

Fig. 6. Stream D1: entropy per batch, entropy is computed w.r.t. the polarity of the
reviews in the batch. Higher values indicate more mixed sentiment in the batch,
i.e., more similar percentages of positive/negative reviews.

batches contain both negative and positive reviews and there is no
clear sentiment label winner in the batches.

7.2. Parameter settings

Table 1 depicts the parameter settings for OPINSTREAM and for
ClusteringBaseline, resp. PolarityBaseline, for the experiments
described in sequel. Some parameter settings are the same for
both streams (like the size of each incoming batch), while others
depend on stream and experiment (like the number of clusters).

The algorithm Silva is a classification rule learner, so it uses
different parameters from OPINSTREAM and PolarityBaseline. We
used following settings. We set the minimum support for con-
sidering a rule for classification to 1 (1 supporting review) and
minimum confidence to 0.001; minimum rule size=3 and thresh-
old for adding a review to the training set=0.6. These values are
conservative, intended to ensure that Silva will find rules even in a
heterogeneous stream like D2.

In most experiments we show the values of the evaluation
measure (cluster quality, classifier quality, processing time) as the
stream evolves. For this, we place the number of reviews seen thus
far in the horizontal axis - see e.g. Fig. 9 on cluster quality for
stream D1. The horizontal axis always starts after reading the
initial seed of labeled reviews and the first batch of the stream (cf.
Table 1, values at first line for first and last column), i.e. at review


http://omen.cs.uni-magdeburg.de/itikmd/cms/upload/Datasets/D2.zip
http://omen.cs.uni-magdeburg.de/itikmd/cms/upload/Datasets/D2.zip

M. Zimmermann et al. / Neurocomputing 150 (2015) 318-330 327

# Properties Per Batch
N
»

1 21 41 61 81 101 121 141 161 181 201 221 241

Number of Batch

Fig. 7. Stream D2: the number of properties per batch.

0.9

0.8

Entropy

0.7

0.6

0.5 *+
1 21 41 61 81

101 121 141 161 181 201 221 241
Number of Batch

Fig. 8. Stream D2: entropy per batch, entropy is computed w.r.t. the polarity of the
reviews in the batch. Higher values indicate more mixed sentiment in the batch, i.
e., more similar percentages of positive/negative reviews.

0.250
0.225
0.200
0.175
0.150
0.125

0.100
150 200 250 300 350 400 450

Purity

# Reviews Over Time

}—OPINSTREAM ------ BaselineCLU

Fig. 9. Stream D1: average weighted purity (“purity” for short) over time. The
horizontal axis depicts the arrival of reviews in batches of 50 reviews. The higher
purity the better, hence OPINSTREAM outperforms the baseline.

150 for D1 (batch size=50 and size of initial seed=100) and at
review 550 for D2 (batch size=50 and size of initial seed=500).

7.3. Evaluation measures

For the evaluation of OPINSTREAM_clusterer we use the purity
measure which we introduced in [2]. Informally, this measure
reflects the number of explicit product properties supported by
clusters, where it is preferable that a cluster supports a single
property supported by no other cluster. Hence, our purity measure
is supervised, based on the product properties recorded with the
reviews. More formally, the evaluation measure of purity is
defined as follows’:

Each review inside a cluster c (of the first or the second level)
refers to a product property. We sort the product properties on the
number of reviews referring to each one, and we assess the
majority property for the cluster ¢ as the one mostly referred to
in ¢. We denote the set of “Reviews referring to the Majority
Property” in ¢ as RMP(c). Further, #coveredProperties(c) is the total
number of product properties that are referenced by reviews in c.

5 We use a modified version of the measures in [2].

Ideally, #coveredProperties(c) =1, whereupon the RMP(c) contains
all reviews in the cluster.

Then for a first level cluster ¢, we define its global purity on the
basis of the purities of its subclusters (counter of subcluster is x)

(12)

. _ «IRMP(x)| - #coveredProperties(x)
globalPurity(c) = ; Y xt#tcoveredProperties(x) - |X|

Finally, we define the purity of the two-level hierarchy © as the
average of the global purity values of its first level clusters

Zf(i 18lobalPurity(c;)

avgWPurity(®) = %
g

13)

where K, denotes the number of first level clusters. Higher purity
values are better and the best purity (1.0) is achieved when all
reviews in each cluster x refer to the represented property, i.e.,
#coveredProperties(x) = 1. However, if the number of clusters is set
lower than then the (a priori unknown) number of product
properties, then some clusters will inevitably accommodate more
than one property, whereupon the value of 1.0 cannot be achieved.

For the evaluation of the OPINSTREAM_polarityLearner we use
the kappa statistic [6] within a sliding window. The kappa statistic
normalizes accuracy by that of a chance classifier

k= pexaminedClassiﬁer - pchanceClassiﬁer (14)
1- pchanceClassiﬁer

where Pexaminedciassifier denotes the accuracy of the examined
classifier, while pcpanceciassifier 1S the probability that a chance
classifier, designed to assign the same number of examples to
each class as the examined classifier, makes a correct prediction.
Kappa lies in the —1 to 1 scale; 1 denotes perfect agreement, O is
what would be expected by chance and negative values indicates
agreement less than chance [28].

7.4. Evaluation on the monitoring of product features

We evaluate the OPINSTREAM. clusterer of OPINSTREAM for the
discovery and monitoring of product features, comparing to Cluster-
ingBaseline. We first compare on D1, building K, =2 global clusters
with K; =2 subclusters each (cf. Table 1, global settings and settings
on D1). Fig. 9 shows how the average weighted purity (cf. Eq. (13)) or
“Purity” for short, changes over time as the D1 stream progresses in
batches of 50 reviews. We see that both methods start with the same
purity values, but OPINSTREAM adapts better to the stream and
achieves higher purity values for reviews 430 till 480. This indicates
that OPINSTREAM creates more homogeneous and stable clusters.

In Fig. 10, we show how purity changes for both methods as the D2
stream progresses. We build nine global clusters with nine subclusters
each, reflecting the fact that D2 contains many product properties; the
parameter settings are again shown in Table 1 (see global settings and
settings on D2). Similar to D1, OPINSTREAM clearly outperforms
ClusteringBaseline, achieving a much higher purity than ClusteringBa-
seline over the entire stream. Since D2 is larger and more hetero-
geneous than D1 (D2 contains 327 properties vs. 38 in D1), the
superiority of OPINSTREAM indicates that the smooth adaptation
approach leads to better clusters even on heterogeneous data.

7.5. Evaluation on polarity learning

The emphasis of this work is more on the unsupervised part of
OPINSTREAM but we also compare the OPINSTREAM_polarityLearner
with PolarityBaseline [2] and with Silva [21], evaluating with the
kappa measure (cf. Eq. (14)). The initial seed is set to 100 reviews for
D1 and to 500 reviews for the larger D2 (cf. Table 1). Since our polarity
learner and the PolarityBaseline learn one classifier per cluster, we also
specify the number of clusters and subclusters.



328 M. Zimmermann et al. / Neurocomputing 150 (2015) 318-330

Purity

2.000 4.000 6.000 8.000

# Reviews Over Time

10.000 12.000

}—OPINSTREAM ------ BaselineCLU

Fig. 10. Stream D2: average weighted purity (“purity” for short) over time. The
horizontal axis depicts the arrival of reviews in batches of 50 reviews. The purity
values vary for both algorithms, but OPINSTREAM constantly outperforms the
baseline.

Kappa

0.0
150 200 250 300 350 400 450

# Reviews Over Time

}—OPINSTREAM ------ BaselineCLU e Silva

Fig. 11. Stream D1: kappa over time (higher values are better) as the stream
progresses in batches of 50 reviews. Performance varies at the beginning, with Silva
performing best and worst, while OPINSTREAM has the least performance varia-
tion. All methods converge to very similar kappa values.

For D1, we build Kz =2 global clusters with K; =6 subclusters
each. In Fig. 11 we depict the kappa values over time as stream D1
progresses in batches of 50 reviews (cf. Table 1, first line, first column).
The kappa values are high for OPINSTREAM and PolarityBaseline at the
beginning, while the method Silva performs poorly until review 300
and is unstable thereafter. For PolarityBaseline, kappa values deterio-
rate after review 250, while the performance of OPINSTREAM
becomes stable. Hence, OPINSTREAM outperforms PolarityBaseline
and is more stable than Silva.

For D2, we build Ky =6 global clusters with K; =6 subclusters
each. In Fig. 12 we depict the kappa values over time as stream D2
progresses in batches of 50 reviews (cf. Table 1, first line, first column).
Since D2 is much larger and more heterogeneous, we allow for larger
containers in ClusteringBaseline (which builds the clusters used by
PolarityBaseline) and we set the similarity thresholds to lower values
than for D1 (cf. Table 1 for all parameter values).

In Fig. 12, we see that the kappa values for OPINSTREAM,
PolarityBaseline and Silva oscillate around a virtual line of
kappa=0.2. OPINSTREAM and PolarityBaseline obtain high kappa
values at the beginning of the stream and drop to the virtual line
while Silva continuously achieves values around the virtual line.
Moreover, the kappa values of OPINSTREAM increase as the stream
progresses and become the highest among the three methods for
the reviews 11,500-12,825. This indicates that OPINSTREAM and
PolarityBaseline achieve a good exploitation of the initial seed.
Hence, learning a classifier inside each cluster is beneficial for such
a heterogeneous stream. The similarity in performance between
OPINSTREAM and PolarityBaseline indicates that the stream does
not lend itself to smooth adaptation of the clusters containing the
classifiers; this is in agreement with the variation in cluster purity
(cf. Fig. 10). In the next subsection we show that the quality of
OPINSTREAM is achieved in a much shorter processing time than
PolarityBaseline (cf. Table 2).

0.75

0.50

Kappa

0.25

0.00

2.000 4.000 6.000 8.000
# Reviews Over Time

10.000 12.000

}—OPINSTREAM ------ BaselineCLAS Silval

Fig. 12. Stream D2: kappa over time (higher values are better) as the stream
progresses in batches of 50 reviews. Performance oscillates for all methods, with
OPINSTREAM and PolarityBaseline performing very similarly and consistently
better than Silva.

Table 2
Execution time of all methods on D1 and D2.

Method Execution time (in sec)

On D1 On D2
Baseline 3.77 916.78
Silva 5.98 574.92
OPINSTREAM 1.48 40.81

7.6. Measuring execution time

In the last set of experiments, we measure execution time of
OPINSTREAM (clustering and classification), comparing it to Silva
and to PolarityBaseline, which in turn is invoked by ClusteringBa-
seline; we denote this as Baseline for short.

In Table 2 we show the execution times for D1 and D2, using
the settings depicted in Table 1 for the “Exectime I” experiment.
OPINSTREAM is clearly the fastest for both datasets, using 1.48 s
for the small stream and 40.81 for the large one. The performance
gains are larger in D2, where Silva is ca. 14 times slower and the
Baseline of [2] more than 20 times slower. This indicates that the
smooth adaptation of OPINSTREAM_clusterer reduces the proces-
sing time demand. The differences between the two datasets lie in
both their size and complexity, D1 consists of 481 reviews
referring to 38 total properties, whereas D2 consist of 12.825
reviews regarding 327 product properties, therefore D2 is much
more complex. Method-specific parameters like the number of
local and global clusters that we examine below, which of course
are based on the dataset per se, also affect the performance.

Finally, we study the execution time as we vary the number of
global and local clusters on the large stream D2. We use the parameter
settings of the last line in Table 1. We show the results in Fig. 13. The
scale of the vertical axis is logarithmic, showing that OPINSTREAM
requires ca. 1/10 of the execution time of the Baseline from [2]. The
execution time increases rapidly for both methods when setting the
number of global and local clusters rather high (e.g. 12 global and 12
local clusters). An explanation is that more cluster rebuilds (Merge
Strategy II) are likely as the number of clusters increases. The smooth
adaptation of OPINSTREAM pays off then, because rebuilds are
performed more rarely than in [2].

8. Conclusion

We presented the framework OPINSTREAM for the extraction of
implicit product features from product reviews and the monitoring of



M. Zimmermann et al. / Neurocomputing 150 (2015) 318-330 329

10000
0
[}
£
k£ 1000
=
-
100 |
2.2 _ _ 12 12

}—OPINSTREAM ------ Baseline

Fig. 13. Execution time of OPINSTREAM and Baseline on stream D2, when varying
the number of clusters. In the horizontal axis, the number before the _ denotes the
number of global clusters, while the number after the _ stands for local clusters.
Execution time is in logarithmic scale, hence execution time of OPINSTREAM is 10
times less and increases slower than the Baseline.

people's attitude towards these features over time. OPINSTREAM
encompasses stream clustering over an evolving set of dimensions,
extending our previous method [2] with a smooth adaptation
mechanism. OPINSTREAM incorporates our recent semi-supervised
stream classification method of [3] that learns feature polarity inside
each cluster - now applied on the clusters learned by the new
adaptation mechanism.

The core characteristics of our adaptive approach are as
follows: (i) we built a two-level hierarchy of clusters, where the
subclusters inside a first level cluster have a cluster-specific set of
dimensions. This allows us to refine the features described by the
first level cluster's centroid into subfeatures described by cluster-
specific words. (ii) We monitor the age and importance of reviews,
where a review is important if it has many neighbors. As reviews
grow older while new ones arrive, their set of neighbors evolves,
and their importance score changes. This allows us to capture
evolution with respect to the contents of the reviews. (iii) We store
reviews that do not fit to the clusters into containers. This allows
us to distinguish between outliers and reviews that represent a
new concept which manifests itself slowly. (iv) We adapt smoothly
whenever possible, by merging containers with clusters while
retaining the features represented by the clusters. This is different
from [2], where reclustering is done whenever containers become
full. (v) We assess the polarity of features from the polarity of the
reviews in each cluster. This allows us to learn and adapt feature
polarity in a semi-supervised way, using only an initial seed of
labeled reviews.

We have evaluated OPINSTREAM on opinionated datasets,
comparing it with earlier algorithms, and we have shown that it
performs better with respect to cluster quality, while the perfor-
mance gap is larger for the larger dataset. We have also evaluated
the semi-supervised stream clustering component under the new
cluster adaptation approach and shown that the new method
performs comparably or better with respect to classifier quality
and much better with respect to execution time. The execution
time improvements are more remarkable in the larger dataset,
indicating that the reduction of the number of reclusterings affects
performance positively.

Future work includes further simplification of the cluster adapta-
tion process. We intend to find ways of modifying the set of
dimensions as infrequently as possible, e.g. by considering only a
fixed set of selected words as dimensions. We also want to devise
visualization aids for the human expert to help her link the old and
the new product features. Also, measuring the quality of evolving
derived features is an open issue, for which we want to identify
appropriate measures. Finally, OPINSTREAM only distinguishes
between positive and negative sentiments, i.e. neutral reviews are

not considered at all. We intend to include reviews with neutral label
in the initial seed, and investigate how the three-class problem
setting affects the performance of the semi-supervised stream
classifier.

Acknowledgments

Work of Max Zimmermann was funded by the German Research
Foundation Project SP 572/11-1 “IMPRINT: Incremental Mining for
Perennial Objects”.

The term fatigue as effect of reclustering was coined in discus-
sion of the last author with Michele Sebag in September 2013.

Special thanks are also due to LS. Silva who gave us the code of
their algorithm [21] for the experiments.

Finally, we are indebted to the reviewers for many useful
questions and comments that helped us improve the paper.

References

[1] M. Zimmermann, E. Ntoutsi, Z.F. Siddiqui, M. Spiliopoulou, H.-P. Kriegel,
Discovering global and local bursts in a stream of news, in: Proceedings of
the 27th Annual ACM Symposium on Applied Computing, SAC'12, ACM, New
York, NY, USA, 2012.

[2] M. Zimmermann, E. Ntoutsi, M. Spiliopoulou, Extracting opinionated (sub)
features from a stream of product reviews, in: Proceedings of the 16th
International Conference on Discovery Science (DS'2013), Lecture Notes on
Computer Science, vol. 8140, Springer, Singapore, 2013, pp. 340-355.

[3] M. Zimmermann, E. Ntoutsi, M. Spiliopoulou, Adaptive semi supervised
opinion classifier with forgetting mechanism (to appear), in: Proceedings of
the 29th Annual ACM Symposium on Applied Computing, SAC'14, ACM, New
York, NY, USA, 2014.

[4] C.C. Aggarwal, P.S. Yu, A framework for clustering massive text and categorical
data streams, in: SDM, 2006.

[5] Y.-B. Liu, J.-R. Cai, ]J. Yin, A. Fu, Clustering text data streams, J. Comput. Sci.
Technol. 23 (1) (2008) 112-128.

[6] A. Bifet, E. Frank, Sentiment knowledge discovery in twitter streaming data,
in: Discovery Science, 2010.

[7] A.Bifet, G. Holmes, B. Pfahringer, Moa-tweetreader: real-time analysis in twitter

streaming data, in: Proceedings of the 14th International Conference on

Discovery science, DS'11, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 46-60.

S. Mukherjee, P. Bhattacharyya, Feature specific sentiment analysis for product

reviews, in: Proceedings of the 13th International Conference on Computa-

tional Linguistics and Intelligent Text Processing, CICLing'12, Springer-Verlag,

Berlin, Heidelberg, 2012, pp. 475-487.

S. Moghaddam, M. Ester, Opinion digger: an unsupervised opinion miner from

unstructured product reviews, in: Proceedings of the 19th ACM International

Conference on Information and Knowledge Management, CIKM '10, ACM, New

York, NY, USA, 2010.

[10] J. Zhu, H. Wang, B.K. Tsou, M. Zhu, Multi-aspect opinion polling from textual
reviews, in: Proceedings of the 18th ACM Conference on Information and
Knowledge Management, CIKM'09, ACM, 2009, New York, NY, USA, pp. 1799-
1802.

[11] D. Chakrabarti, R. Kumar, A. Tomkins, Evolutionary clustering, in: Proceedings
of the 12th ACM SIGKDD International Conference (KDD'06), ACM, Philadel-
phia, PA, 2006, pp. 554-560.

[12] Y. Chi, X. Song, D. Zhou, K. Hino, B. Tseng, Evolutionary spectral clustering by
incorporating temporal smoothness, in: Proceedings of 13th ACM SIGKDD
International Conference (KDD'07), ACM, San Jose, CA, 2007.

[13] X. Zhang, C. Furtlehner, ]. Perez, C. Germain-Renaud, M. Sebag, Toward autonomic
grids: analyzing the job flow with affinity streaming, in: Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD '09, ACM, New York, NY, USA, 2009, pp. 987-996.

[14] M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, R. Schult, MONIC—modeling and
monitoring cluster transitions, in: KDD, 2006.

[15] E. Ntoutsi, M. Spiliopoulou, Y. Theodoridis, FINGERPRINT—summarizing cluster
evolution in dynamic environments, Int. ]. Data Wareh. Min. 8 (3) (2012) 27-44.

[16] R. Schult, M. Spiliopoulou, Discovering emerging topics in unlabelled text
collections, in: ADBIS, 2006.

[17] L. AlSumait, D. Barbara, C. Domeniconi, On-line LDA: Adaptive topic models for
mining text streams with applications to topic detection and tracking, in:
ICDM, 2008.

[18] A. Gohr, A. Hinneburg, R. Schult, M. Spiliopoulou, Topic evolution in a stream
of documents, in: SDM, 2009.

[19] L Zliobaite, A. Bifet, B. Pfahringer, G. Holmes, Active learning with evolving
streaming data, in: Proceedings of the ECML PKDD 2011, Lecture Notes in
Computer Science, vol. 6913, Springer-Verlag, Berlin, Heidelberg, 2011.

[20] S. Fralick, Learning to recognize patterns without a teacher, IEEE Trans. Inf.
Theor. 13 (1) (1967) 57-64 http://dx.doi.org/10.1109/TIT.1967.1053952.

(8

(9


http://refhub.elsevier.com/S0925-2312(14)01316-2/sbref5
http://refhub.elsevier.com/S0925-2312(14)01316-2/sbref5
http://refhub.elsevier.com/S0925-2312(14)01316-2/sbref15
http://refhub.elsevier.com/S0925-2312(14)01316-2/sbref15
dx.doi.org/10.1109/TIT.1967.1053952

330 M. Zimmermann et al. / Neurocomputing 150 (2015) 318-330

[21] LS. Silva, J. Gomide, A. Veloso, W. Meira, Jr., R. Ferreira, Effective sentiment
stream analysis with self-augmenting training and demand-driven projection,
in: Proceedings of the 34th International ACM SIGIR Conference on Research
and Development in Information Retrieval, ACM, 2011, New York, NY, USA,
pp. 475-484.

[22] B. Drury, L. Torgo, JJ. Almeida, Classifying news stories with a constrained
learning strategy to estimate the direction of a market index, Int. J. Comput.
Sci. Appl. 9 (1) (2012) 1-22.

[23] A. McCallum, K. Nigam, A comparison of event models for naive Bayes text
classification, in: IN AAAI-98 Workshop on Learning for Text Categorization,
AAAI Press, 1998, Menlo Park, CA, USA, pp. 41-48.

[24] J. Rissanen, Modeling by shortest data description, in: Automatica, vol. 14,
pp. 465-471.

[25] J. Gama, Knowledge Discovery from Data Streams, 1st ed., Chapman & Hall,
CRC, London, UK, 2010.

[26] M. Hu, B. Liu, Mining and summarizing customer reviews, in: Proceedings of
the 10th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD 2004, ACM, New York, NY, USA, 2004, pp. 168-177.

[27] ]. Yu, Z.-]. Zha, M. Wang, K. Wang, T.-S. Chua, Domain-assisted product aspect
hierarchy generation: towards hierarchical organization of unstructured con-
sumer reviews, in: Proceedings of the Conference on Empirical Methods in
Natural Language Processing, EMNLP '11, Association for Computational
Linguistics, Stroudsburg, PA, USA, 2011, pp. 140-150.

[28] AJ. Viera, J.M. Garrett, Understanding interobserver agreement: the kappa
statistic, Family Med. 37 (5) (2005) 360-363.

Max Zimmermann is a PhD student at the Knowledge
Management & Discovery Lab (KMD), the Faculty of
Computer Science of the Otto-von-Guericke University
Magdeburg, Germany, since 2011, after finishing the
Master of Data & Knowledge Engineering at the same
Faculty. His research is on opinion stream mining,
where he works on stream clustering methods,
semi-supervised stream classification methods and
constraint-based clustering.

KMD webpage: http://www.kmd.ovgu.de/ Publica-
tions under: http://www.kmd.ovgu.de/Team/Academic
+Staff/Max+Zimmermann-karte-252.html

Eirini Ntoutsi is a post-doctoral researcher at the
Department of Informatics, Ludwig-Maximilians
University of Munich (LMU), Germany and a scholar
of the Alexander von Humboldt Foundation. She
obtained her PhD in Informatics from the Department
of Informatics, University of Piraeus, Greece. Her
research is on pattern extraction, change detection
and evolution monitoring over complex dynamic data
and data streams.

Webpage: http://infolab.cs.unipi.gr/people/ntoutsi/
Publications of the group under: http://www.dbs.ifi.
Imu.de/cms/Publications

Myra Spiliopoulou is a Professor of Business Informa-
tion Systems in the Faculty of Computer Science of the
Otto-von-Guericke University Magdeburg, Germany,
since March 2003. Her research lab “Knowledge Man-
agement & Discovery” (KMD) works on data mining,
stream mining and web mining for dynamic environ-
ments, and develops methods for model adaption and
model monitoring under drift. Her research on topic
monitoring, social network monitoring and analysis of
complex dynamic data has been published in
renowned international conferences and journals. She
is regularly presenting tutorials on different aspects of
complex data mining at ECML PKDD, and she is
involved as a (senior) reviewer in major conferences on data mining and knowl-
edge discovery, including IEEE Conference on Data Mining (ICDM), ECML PKDD,
ACM SIGKDD and CIKM.

In the last 3 years, she has served as Workshops Chair at the IEEE ASONAM
Conference 2013 and at the IEEE Conference on Data Mining (ICDM) 2011, and has
been PC Co-Chair of the 36th Annual International Conference of the German
Classification Society (GfKI 2012).

She is a member of the IEEE Computer Society and of the ACM. In Germany, she is
a member of the German Informatics Society and the German Classification Society.
She is a member of the Jury for the best PhD Award of the German Informatics
Society and for the best PhD Award of the ACM SIGKDD. Since November 2013, she
is a member of the IEEE's Transactions on Knowledge and Data Engineering's (IEEE
TKDE) editorial board.

KMD webpage: http://www.kmd.ovgu.de/ Publications under: http://www.kmd.
ovgu.de/Team/Academic+Staff/Myra+Spiliopoulou-karte-96.html


http://refhub.elsevier.com/S0925-2312(14)01316-2/sbref22
http://refhub.elsevier.com/S0925-2312(14)01316-2/sbref22
http://refhub.elsevier.com/S0925-2312(14)01316-2/sbref22
http://refhub.elsevier.com/S0925-2312(14)01316-2/sbref25
http://refhub.elsevier.com/S0925-2312(14)01316-2/sbref25
http://refhub.elsevier.com/S0925-2312(14)01316-2/sbref25
http://refhub.elsevier.com/S0925-2312(14)01316-2/sbref28
http://refhub.elsevier.com/S0925-2312(14)01316-2/sbref28
http://www.kmd.ovgu.de/
http://www.kmd.ovgu.de/Team/Academic+Staff/Max+Zimmermann-karte-252.html
http://www.kmd.ovgu.de/Team/Academic+Staff/Max+Zimmermann-karte-252.html
http://infolab.cs.unipi.gr/people/ntoutsi/
http://www.dbs.ifi.lmu.de/cms/Publications
http://www.dbs.ifi.lmu.de/cms/Publications
http://www.kmd.ovgu.de/
http://www.kmd.ovgu.de/Team/Academic+Staff/Myra+Spiliopoulou-karte-96.html
http://www.kmd.ovgu.de/Team/Academic+Staff/Myra+Spiliopoulou-karte-96.html

	Discovering and monitoring product features and the opinions on them with OPINSTREAM
	Introduction
	Related work
	Basic concepts and overview of OPINSTREAM
	Core functionalities of OPINSTREAM
	Definitions and notation
	Components and workflow of OPINSTREAM

	Extracting an initial hierarchy of polarized features
	The core of the OPINSTREAMunderscoreclusterer
	Specifying the set of dimensions
	Deriving a cluster's feature
	Assigning an arriving review to a cluster or a container

	The basic learner for OPINSTREAMunderscorepolarityLearner

	Adapting the evolving hierarchy of features
	Rationale of the new approach
	Description length as quality indicator
	Impact of merging on cluster description length
	Deciding for hierarchy rebuilds on the basis of fatigue
	Adapting the hierarchy with or without cluster rebuilds
	Updating the age and importance score of reviews

	Adapting the evolving polarities of the features
	Forward adaptation – incorporating new reviews
	Backward adaptation – weighting reviews by age

	Experiments
	Datasets
	Parameter settings
	Evaluation measures
	Evaluation on the monitoring of product features
	Evaluation on polarity learning
	Measuring execution time

	Conclusion
	Acknowledgments
	References




