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ABSTRACT
Isotopic mapping has become an indispensable tool for the
assessment of mobility and trade of the past. However, mod-
eling and understanding spatio-temporal isotopic variation
is complicated by the small number of available samples, po-
tential mobility of the investigated samples, sample preser-
vation quality, uncertainty of measurements, and so forth.
In this work, we use data mining techniques to build an
isotopic map (descriptive modeling) and to determine the
spatial origin of new samples (predictive modeling). In par-
ticular, we propose a clustering-based isotope ratio model
and a scoring function for the origin prediction of new sam-
ples. Our data was extracted from real animal finds from an
Alpine passage that spans three countries (Germany, Aus-
tria, and Italy) and comprises a high variety of isotopes and
geological characteristics. Our results and evaluation by do-
main experts show that it is possible to derive a model of
the area for both descriptive and predictive purposes.

1. INTRODUCTION
Isotopic mapping has become a powerful tool for predict-

ing the place of origin of a particular item. It is a popular
method for solving Archaeology-related problems like deter-
mining the origin of archaeological finds, as well as analyzing
the diet of individuals or entire populations, the climate of a
region, and the migration patterns of people and their habi-
tat [1, 5]. For example, in [6], isotopic mapping is used to
predict the places of origin of ivory samples (from elephant
teeth) in order to classify given samples as legally or illegally
obtained. Typically, the items represent samples of living or
dead creatures (humans, animals, sometimes even plants)
such as bones, teeth, wood, etc.

The general idea behind isotopic mapping is that isotope
measurements in different samples, reflect the environment
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Figure 1: Spatial projection of the data set. Circle
size indicates the number of samples at each loca-
tion.

where the corresponding organisms were located in their life-
time. Isotope values in the organism of a given animal are
the products of the metabolism of the animal. As such, the
values are based on the food digested during the organism’s
life which in turn depends on geological processes of the envi-
ronment. A common hypothesis is that there is a connection
between isotopic measurements from skeletal remains of an
organism and the geological isotopic fingerprints that are
specific for the spatial catchment area where the organism
mostly lived. Since the geological process on the globe differ
considerably within surprisingly small regions, the surface
of our planet can be divided into many small catchment
areas each with a distinctive, characteristic geological iso-
tope fingerprint. Isotopic mapping aims at defining small
scale catchment areas featuring a homogeneous, characteris-
tic isotopic fingerprint based on the observed characteristics
of organisms that lived there (as the geological fingerprint
is not directly applicable to the intended tasks).

In data mining terms, isotopic mapping aims at finding
spatially coherent groups (clusters) of individuals with ho-
mogeneous isotopic features. The spatial extend of such



a cluster represents a catchment area and the features of
the individuals represent the characteristic fingerprint of
this area. Based on this characteristic fingerprint, samples
can be classified as either local (if its isotopic finger print
matches the fingerprint of the catchment area where it has
been found/obtained) or non-local. However, so far, the
challenge of isotopic mapping has not caught too much at-
tention in the computer science community and, thus, has
been done mostly manually by domain experts.

One important thing to notice is that applying a spatial
clustering algorithm (on the isotope attributes) is not feasi-
ble since we cannot expect a hard assignment between sam-
ples and locations due to migration and the effect of inter-
fering variables on the metabolism. Due to the variability of
this biological material, domain experts typically want the
prediction of the location to be probabilistic, i.e., they want
to know, given a concrete sample, for each catchment area
the probability that the sample originates from this area.

At first glance, the problem of predicting the place of ori-
gin of an individual finding may appear as a simple clas-
sification task. However, in many applications we face the
problem that the definition of the spatial extend of each
catchment area is often not known, and, thus, we do not
have a ground truth of classes. As a consequence, we can-
not derive any class information from the spatial location
of a sample that can be used in order to train a supervised
classifier. Also, domain experts do not attempt to define
catchment areas by hand (e.g. from geology, if known) since
in this case they introduce a strong bias.

In this paper, we describe a new approach for isotopic
mapping based on a pipeline of data mining algorithms which
is applicable to multi-dimensional data. The approach evolved
from a concrete use case: to investigate migration and trade
in the past in the Alps using isotopic mapping of the remains
of animals as part of a large interdisciplinary project (see
acknowledgements). The task is to employ a data-driven
approach to define the catchment areas and derive a charac-
teristic isotopic fingerprint from these areas that can be used
as predictive model. This enables archaeologists to evaluate
the probabilities that a given finding originates from each of
the catchment areas. In particular, it gives the domain ex-
pert a probability that a given sample is local or has movedto
the place where it has been found. The proposed pipeline
involves a clustering step in order to determine the catch-
ment areas and a step that derives the isotopic fingerprints
of each catchment area, and, finally a visual analytics step
that enables the domain expert to locate a given sample
through visually inspecting the isotopic map.

The remainder of this paper is organized as follows. We
review related work in Section 2. A more detailed descrip-
tion of the use case and some basic concepts are introduced
in Section 3. In Section 4, a new clustering-based method
for isotopic mapping is presented and a predictive model for
the domain expert is derived. We evaluate this approach on
the data set from the sketched research project on migration
and trade of people in the past in the central European Alps
(see Section 5). Finally, some conclusions and future work
directions are given in Section 6.

2. RELATED WORK
Isotopic analysis is a powerful tool for animal ecologists

with a variety of applications like tracking animal migration,
dietary reconstruction of animals, the use of water resources,

food web structure etc, e.g., [7]. Stable isotope ratios vary
among food webs and are incorporated into the animal’s
tissue via its diet.

In [6], the authors study the problem of illegal elephant
ivory trafficking by detecting the age and provenance of
the ivory. Their dataset consists of 606 ivory samples from
Africa and Asia. For the analysis, five different stable iso-
tope ratios of carbon, oxygen, hydrogen and sulfur were
used. For the determination of the origin of ivory, differ-
ent neighborhood based classification models were employed,
like nearest neighbor (NN) and k-nearest neighbors (KNN),
whereas the Euclidean distance was employed as the dis-
tance function.

The importance of data mining [4] for natural sciences
is constantly increasing as the domain scientists deal with
larger datasets and higher data complexity. Classification,
clustering, regression and other mining tasks are applica-
ble to problems in these domains like species classification,
grouping of findings and prediction. Data-driven exploration
is different from the model-driven approaches that are typi-
cal in these domains and therefore this presents new oppor-
tunities for the Data Mining domain.

3. THE USE CASE: ISOTOPIC MAPPING
OF BIOARCHAEOLOGICAL FINDS

The study area is the transalpine Inn-Eisack-Etsch pas-
sage across the German-Austrian-Italian Alps which has been
used since prehistoric times and is of great archaeological
interest. The spatial coverage of the region under investiga-
tion is shown in Figure 1; there are samples for the whole
passage, although the sampling rate is low especially in the
south. The overall goal of the project is the establishment
of an isotopic fingerprint for bioarchaeological finds through
isotopic mapping and its application to archaeological and
cultural-historical problems of the Late Bronze Age until
Roman Times.

The isotopic mapping is achieved using stable strontium
Sr, lead Pb, and oxygen O isotopes from three species of res-
idential vertebrates. The study population D consists of 218
animal findings including deer (48 samples), pigs (81) and
cows (89). The data consists of spatial information on the lo-
cation of the find (which is given by a latitude-longitude-pair
associated with the archaeological site, not the particular
find) and the ratios of oxygen (O), strontium (Sr) and lead
(Pb) isotopes in the find. The oxygen isotope 18O is given by
its δ value (δ18OPO4), whereas two measured strontium iso-

topes (87Sr and 86Sr) are expressed as their fraction
87Sr
86Sr

.

and four lead isotopes 204Ld, 206Ld, 207Ld, and 208Ld are
given as 208Pb

204Pb
, 207Pb

204Pb
, 206Pb

204Pb
, 208Pb

207Pb
, and 206Pb

207Pb
. So, in total

7 (partly redundant) isotopic ratios attributes and 2 spatial
attributes are used for data description. From an analysis
perspective the data set, although small, is extremely inter-
esting and challenging because there will not be a perfect fit
to a (previously unknown) ground truth for several, already
discussed, reasons.

4. A CLUSTERING-BASED ISOTOPE RA-
TIO MODEL FOR ISOSCAPING

The challenge for the data analysis part of the project is
to build an isotopic map of the region based solely on the
isotopic description of the samples that can be used for de-



riving probabilities about the origin of individual samples.
Since there is no ground truth for the map, we first use clus-
tering in order to derive the map components (catchment
areas). We extract groups of samples with similar isotopic
fingerprint in a data-driven way, explicitly not considering
the spatial information of the samples. Rather, the spatial
information is later used for the visualization. In particu-
lar, we chose to use a mixture model approach, where the
components of the model are probability distributions re-
flecting the data distributions of the clusters. In particular,
we use a Gaussian Mixture Model, which assumes that the
data points are generated from a mixture of a finite num-
ber k of Gaussian distributions with unknown parameters.
The reasons for this choice are that (i) it is a rather generic
clustering model, especially if nothing is known about the
ground truth beforehand, and (ii) due to the use of probabil-
ity distributions it is able to capture variations and outliers
(at least to some degree).

4.1 Isotopic mapping
Let D = {o1, o2, · · · , on} be a set of observations (sam-

ples) where each observation oi ∈ D is described by d iso-
topic ratios, i.e. o is a d-dimensional feature vector oi =
(o1i , o

2
i , · · · , odi ) neglecting the spatial information. Let us

assume that the isotopic data were generated according to a
Gaussian Mixture Model with k components and each clus-
ter 1 ≤ i ≤ k can be modeled as a d-variate Gaussian with
mean µi and standard deviation Σi. The problem of de-
termining these k Gaussians is two-fold: we need (i) to
assign the points in D to the k clusters and (ii) to learn
the Gaussian distribution parameters for each cluster. The
well-known Expectation-Maximization (EM) algorithm [2],
offers as solution to this problem by alternating between an
expectation step and a maximization step. In the E-step, the
model is fixed and an estimation of instance to clusters prob-
abilities is made given this model. In the M-step, based on
the assignments of the previous step new parameters from
the model are computed so as the log-likelihood is maxi-
mized. These two steps are alternated until convergence.

The model of the isotopic map is a Gaussian Mixture
Model learned from our dataset D through the EM algo-
rithm. The final modelM consists of k components/clusters:

M = {(c1 = (µ1,Σ1)), (c2 = (µ2,Σ2)), · · · , (ck = (µk,Σk))}

where each component ci is described in terms of its mean
and covariance, ci = (µi,Σi), i.e. µi is a d-dimensional
vector and Σi a d× d matrix.

As part of the model we also consider the probabilities
according to which an instance was assigned to the different
clusters. In particular, each observation o ∈ D is annotated
with a cluster-distribution probability

o.prob = [o.prob1, o.prob2, · · · , o.probk],

with o.probj , 1 ≤ j ≤ k being the probability of instance oi
coming from component/cluster j and

∑k
j=1(o.probj = 1),

that is the probabilities should sum up to 1. As we will show
in the experiments, such a probability helps us understand
better the topology of the isotopes. EM clustering is often
used as a hard clusterer, by considering only the most prob-
able instance assignment. However, for our problem, a soft
assignment leads to much better insights on the data.

4.2 Applying the isotopic map
Based on the isotopic map, we use nearest-cluster classi-

fication in order to answer the question about sample ori-
gins. As our analysis shows that isotopic clusters are not
well-separated spatially, we also propose a cluster-spatial-
location approximation method, based on the spatial distri-
bution of cluster members, in order to specify the origin of a
new sample more precisely. We opt for classification instead
of regression for the origin prediction task, due to the small
size of our data set, the sparsity of the samples in the spatial
domain and the other challenges mentioned above. Due to
these issues, estimating the exact position of a new sample
is more difficult than estimating a cluster (and an associated
spatial distribution) the instance might belong to.

Although the primary goal of the isotopic mapping is to
offer an understanding of the data w.r.t. their isotopic char-
acteristics, it is also desirable to be able to assign new in-
stances to their most probable clusters in the model subject
to the following considerations: Given an observation o and
its most probable cluster c, we can display the spatial distri-
bution of all members of c over the area under investigation
on a map. In our use case, we can visualize the spatial
distribution of the members of c over all excavation sites
in the alpine passage shown in Figure 1. This provides us
with the information about which sites on the map contain
members of the cluster c, i.e., the potential catchment area
of c. These catchment area are not forced to be spatially
coherent. However, if we further aggregate the number of
instances of c at each site of the map, domain experts can
use this data to get a feeling on how probable it is that o
originates from a given site on the map.

Our prediction of the most probable cluster resembles the
E-step of the EM algorithm, that is, for a given instance o =
(o1, o2, · · · , od) and the extracted isotopic mapping model
M , we estimate the probability of o being generated by the
different components ofM . The prediction is a cluster distri-
bution vector: o.prediction = [o.prob1, o.prob2, · · · , o.probk]
over the k different components of M . We pick that cluster
c(o) for o which has the highest probability, i.e.,

c(o)← argmaxj{ o.prob
j}, 1 ≤ j ≤ k (1)

To summarize, the application of the isotopic mapping M
for a given instance o is facilitated through clustering and
visual analytics as follows: (i) Determine the most probable
cluster c(o) from M by Eq. 1. This is the nearest-cluster
classification step. (ii) Display the map of the area under
investigation and aggregate for each location l on the map
the instances of c(o) at l (e.g., as a heat map). This is the
cluster-spatial-location approximation step.

5. EXPERIMENTAL EVALUATION
We evaluate our approach on the dataset introduced in

Section 3. The preprocessing of the data is discussed in
Section 5.1. The extracted isotopic mapping is presented in
Section 5.2 and the origin prediction results in Section 5.3.

5.1 Data Preprocessing
We apply pre-processing to make the data easier to han-

dle algorithmically. In a first step, all values are transformed
into pairwise fractions of isotopes. As the oxygen isotope ra-
tio is given in δ-notation, we initially transform it back to the
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Figure 2: An isotopic description of the isotopic
mapping model components (clusters). For each iso-
topic ratio feature, the cluster distribution of its val-
ues is depicted. The cluster color is preserved across
the different charts.

original
18O
16O

fraction. Strontium is already given as a sin-

gle fraction, which we retain. Lead isotopes 204Ld, 206Ld,
207Ld, and 208Ld are measured as five pairwise fractions.
We dismiss all but two, which retain all isotopes to reduce
redundancy. We arbitrarily chose to group 204Ld and 208Ld,

as well as 206Ld and 207Ld. We represented them as
204Ld
208Ld

and
206Ld
207Ld

to keep the skewed end towards zero. After stan-
dardizing all measurements to isotope fractions, we normal-
ized the resulting values. Since we observed that the oxy-
gen isotope ratio was approximately normally distributed,
while the strontium and lead isotope ratios were skewed,
we applied a logarithmic transformation to these ratios to
counteract this effect.

5.2 Results of the Isotopic Mapping
The whole sample population was used to generate the iso-

topic mapping of the environment. Only the isotopic finger-
prints of the instances was used for the descriptive modeling
(clustering) part, the location information was omitted and
used later to examine the spatial extension of the detected
clusters.

The Expectation-Maximization algorithm implemented in
Weka [3] was used for clustering. The choice of k was based
on internal cluster quality measures, namely the silhouette
coefficient, cohesion and separation, for which k = 7 proved
the best setting.

A per-isotope description of the clustering-based isotope
ratio model resulted from k = 7 is shown in Figure 2. For
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Figure 3: The spatial projection of the isoscaping
model components. Clusters are represented by
color. The size of the circles at each location de-
picts the number of samples in the location.

each of the d features (isotopic ratio), the distributions of
its values within each cluster are depicted as box plots. Al-
though only a single-attribute view in the clusters is pro-
vided by this figure, we can see that there is some variation
in the values across the different clusters for all isotopes. The
variation is lower for the oxygen feature, the mean value
is very similar across the different clusters, only cluster 5
(light blue color) seems to differentiate significantly from
the other clusters. Also, the range of oxygen values within
each cluster is much larger compared to the ranges of the
other isotopes. In addition, it is interesting to observe that
each attribute contributes to the differentiation of different
clusters so it seems necessary to consider all attributes si-
multaneously rather than focusing on only one of two.

The spatial projection of the clusters along the alpine pas-
sage under investigation is presented in Figure 3. Each of the
different clusters is presented in a different color, the size of
the circles corresponds to the population sample in the lo-
cation. The “multi-colored” locations in the map indicate
that the samples of those locations might belong to differ-
ent clusters (note that the clustering takes place only in the
isotopic space). It can be observed that the isotopic clusters
are not spatially coherent and clearly separable. However,
some of the clusters have a clear spatial “signature”. For
example, the yellow cluster is mainly located in the middle
Alps region, the green cluster is mainly in the north and the
dark pink cluster is mainly in the south. The blue cluster is
spread over the entire region.

5.3 Applying the Isotopic Mapping

5.3.1 Visually Analyzing the Map
The clustering model (EM clustering) is soft in its assign-

ments. That is each instance is assigned a probability of be-
longing to each of the resulting clusters; the “hard-assigned”
cluster to the instance is the one with the maximum prob-



(a) soft-view (b) hard-view

Figure 4: Cluster 1 (the biggest one) spatially pro-
jected. More intense color indicates higher assign-
ment probabilities to the cluster.

ability. The highest probability though gives us an indica-
tion of how well an instance fits to its assigned cluster and
at the cluster level, the assignment probabilities of cluster-
members provide an indication of how tight the clusters are.
A spatial projection of these probabilities, with higher prob-
abilities being displayed by more intense colors, is shown be-
low for two of the biggest clusters from Figure 3, cluster 1
(Figure 4, 68 cluster members) and cluster 2 (Figure 5, 61
cluster members), and the smallest one, cluster 3 (Figure 6,
7 cluster members).

For each figure, the right part shows the hard-view when
only the instances with the highest probability of being gen-
erated by the cluster (c.f., Eq. 1) are aggregated at each lo-
cation. The left part shows the soft-view when all instances
and their probabilities to being generated by the cluster are
plotted. It can be seen that especially when the number of
cluster members is high and the members are not spread
too strongly over the map, the proposed visualization gives
a clear hint where a sample may come from. On the other
hand, if the members of the cluster are spread over many lo-
cations, then the heat map does give a first impression but
it is hard for a user to give an authoritative forecast on the
place of origin. In the latter case, even though this seems
somewhat unsatisfactory to computer scientists, to archae-
ologists multiple alternative hypotheses are acceptable. The
visualization presented here was well-received by the domain
experts.

5.3.2 Predicting Places of Origins
Although archaeologists are typically happy with the quite

fuzzy visualization discussed above, we try to derive more
profound predictions of the place of origin for a given sample.

(a) soft-view (b) hard-view

Figure 5: Cluster 2 (the second biggest one) spa-
tially projected. More intense color indicates higher
assignment probabilities to the cluster.

For this purpose, we employ a nearest-neighbor-classifier ap-
proach at the cluster level. That is, for a new sample s, we
find its closest cluster minimizing the Mahalanobis distance
of the isotopic fingerprint of s to each of the cluster centers
µi. This is a comparison in the isotopic space and since,
as we saw previously, clusters are not well separated in the
spatial domain, we further approximate the place of origin
within the resulting clusters by considering where the spatial
center of the cluster population is is.

Since there is no ground truth of the exact classes of each
instances and, in order to avoid bias and overfitting, we use
two different experimental scenarios. In the first settings,
called scenario A, we use the whole data set to build the
isotopic mapping model and then we assign the observations
to their closest cluster in the model using the proximity be-
tween the isotopic fingerprints of the observation and the
cluster. We evaluate the spatial Euclidean distance between
the true instance location and the predicted one (through
clustering and cluster center location approximation). For
this scenario, we use all instances during clustering as the
ground truth labels come from the clustering itself. How-
ever, since testing instances are part of the model this ap-
proach is biased and subject to overfitting. Therefore, we
also evaluate a second setting, called scenario B, where the
data set is split into a training set and a testing set and only
the training set is used for model building step (clustering).
To evaluate, its quality we assign instances of the test set
to their closest clusters (based on the isotopic part) and we
check how far away the actual location of the test instances
to the most probable location of the cluster is.

For the scenario A, i.e., when all instances are used for
isotopic mapping, we achieved an overall score of 0.59. For



(a) soft-view (b) hard-view

Figure 6: Cluster 3 (the smallest one) spatially pro-
jected. More intense color indicates higher assign-
ment probabilities to the cluster.

the scenario B, we applied a 4-fold cross validation, that
is, each time 3 of the folds were used for isotopic mapping
(training) and the remaining 1 fold for testing. An overall
average score of 0.60 was achieved for this scenario. The
sheer numbers are not too impressive from a computer sci-
ence point of view. But it shows on the other hand, that
scenario A does not suffer significantly from overfitting. In
addition, as outlined above, domain experts do not consider
a hard classification as realistic due to the many origins of
variability and uncertainty in the data.

6. CONCLUSIONS AND OUTLOOK
In this paper, we deal with the isotopic mapping and

fingerprinting problem for the transalpine Inn-Eisack-Etsch
passage across the German-Austrian-Italian Alps. The pas-
sage has been used since prehistoric times and is of great
archaeological interest. We argue that due to the complex-
ity of the data, simple models focusing on a single dimen-
sion or examining correlation between two dimensions, as it
is typically used by domain experts, are not adequate. We
follow a data-driven analysis path that does not include any
background knowledge to build the model in order to avoid
bias.

We propose a clustering-based isotopic mapping model
and an origin prediction method for predicting the proba-
bility of an instance being generated by some model com-
ponent. Our finding over real data, from animal findings in
the Alps, suggest that our method offers a good “explana-
tion” of the area under investigation and comprises a useful
tool for domain experts not only for understanding the iso-
topic fingerprint of the area but also for locating the origin
of unknown instances.

Future work includes better approximating of the spatial
origin of each cluster and employing it for the origin pre-
diction of new instances (now this is left to domain experts
and is done by inspecting the heatmap of the closest clus-
ter (c.f., Section 5.3.1) or is done naively by aggregating
the location of cluster members (c.f., Section 5.3.2). Our
results so far indicate that clusters of features have no sepa-
rate spatial extent, on the contrary we can see overlaps and
clusters scattered all over the place. An approach to spa-
tial separation of the clusters, through e.g. some members
re-positioning in other clusters, that would not significantly
hurt their isotopic fingerprint (i.e., the model in the isotopic
domain) might be a solution to the spatial overlap of the
clusters issue.

The number of data points analyzed is quite small (218
data points) and scattered over only a few sites. This is
particularly problematic when the goal is to build a model
of the covered areas (isotopic fingerprinting) and use these
models for origin prediction of future samples. Moreover, the
samples might be subject to isotopic errors due to measure-
ment device errors, bad preservation etc, but also to spatial
errors due to migration and trading in the past or due to
environmental factors. As part of our future work, we plan
to model uncertainty of different types and incorporate it in
the mining model.
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