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Unfairness in Machine Learning
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Discrimination
@ Discrimination is treatment or consideration of, or making a
distinction towards, a person based on a protected attribute to
which the person is perceived to belong.
@ Protected attributes are considered to be: age, disability, race,
religion, sex, sexual orientation, etc.
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Recent discrimination discoveries in machine learning
applications
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Why Machine Learning is Unfair?

@ Data might encode existing biases e.g., bias caused by humans,
features of minorities contain more noise.

@ Data collection feedback loops.

@ Different data distributions for different groups e.g., lack of

observed examples.
@ Proxies to protected attributes e.g., marital status wife or husband

can reveal the gender.
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Basic Notations

@ Training dataset D drawn from a joint distribution P(F,S,y)

@ We assume a binary class: y € {+,—}

@ F is the set of non-protected attributes and S is a binary protected attr.

class label
Protected Attribute Rejected Granted
s (Female) s_ sy
5 (Male) 5 5y

y

Fairness notion [HPS"16]

Equalized Odds = |§FPR| + |§FNR)|
5FPR = Ply # 915-) — Ply # 9ls-)
OFNR = P(y # y|5¢) — P(y # Jls+) ‘@”




Unfairness in Machine Learning
ooooe

The "trap” of Equalized Odds

@ Positive class << Negative class e.g.,
|sT]+ (57| = 5%, |s7| + |57 | = 95%

@ Model classifies everything as negative.

@ Accuracy is still high (95%) and model is “fair” i.e.,
0FNR =0,0FPR =0

v
Goal

Find a mapping function f(-) that minimizes Eq.Odds while
performing well for both classes.
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AdaFair: Overview

o Fairness-aware boosting approach that deals with
class-imbalance and unfair outcomes.

@ Changes data distribution at each round based on the notion
of cumulative fairness.

@ After the training phase, the best sequence of weak learners
which achieve high performance and fairness is selected.

Weak leamner Weak learner Weak leamer Strong Learner
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Cumulative Fairness

@ Let j: 1...T be the current boosting round, T is user defined
o Let Hyj = ZJ,::1 ajhi(x) be the ensemble model up to current
round j.

@ The cumulative fairness of the ensemble up to round j, is
defined based on the parity in the predictions of weak learners
h1()... hj() between protected and non-protected groups

Cumulative Fairness
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Fairness weights

@ Vanilla AdaBoost already boosts misclassified instances for
the next round.

@ Our weighting explicitly targets fairness by extra boosting
discriminated groups for the next round.

@ Instances x; € D which belong to a group that is
discriminated receive a fairness-related weight u;

Weight calculation

[SFNRY |, if T((yi # hj(xi)) A |SFNRY| > €),x € s, 6FNR™ >0
[6FNRY|, if T((y;i # hj(x;)) A |SFNRY| > €),x; € 51, 6FNR™ < 0
ui = < [0FPRY | if T((y: # hj(x:)) A |6FPRY| > €),xi € s_,8FPRY >0
[6FPRY|, if T((yi # hj(x:)) A |0FPRY| > €),x € 5_,6FPRY <0 |,

,
0, otherwise 1@
225




AdaFair’s pseudocode

Input: D = (x;,y,-)f’, T,e
Output: Ensemble H

© Initialize w; =1/N and u; =0, for i =1,2,..., N
@ Forj=1toT:

o

(2]
(5]
o
(5]
(6]
Q

© Output H(x) = ZJ-T:1 aihj(x)

Train a classifier h; to the training data using weights w;.
N wil(yi#h(x))

Compute the error rate err; = ==L S
. 1 1—err;
Compute the weight o = 5 - In( o) )

Compute fairness-related § FNR'J
Compute fairness-related § FPR'/
Compute fairness-related weights u;
Update the distribution as

w; — %W,‘ . e(*j'hj(x)'H(YI';éhj(Xf)) . (]_ + Ui)
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Performance trade-off: error vs balanced error

@ AdaFair optimizes for the balanced error rate.

o AdaFair selects the optimal number of weak learners
1.---0,0 < T that minimizes BER.

@ AdaFair considers both ER and BER in the objective function
as follows:

argmin (c- BERy + (1 — c) - ERy + Eq.Oddsy)
0

@ Parameter c is user-defined and controls the impact of error
and balanced error rate.
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Baselines

AdaBoost [Sch99]: vanilla AdaBoost.
SMOTEBoost [CLHB03]: AdaBoost with SMOTE for
imbalanced data.

o Krasanakis et al. [KXPK18]: Boosting method which
minimizes Equalised Odds by approximating the underlying
distribution of hidden correct labels.

e Zafar et al.[ZVGRG17]: Training logistic regression model
with convex-concave constraints to minimize Equalised Odds.

@ AdaFair NoCumul: Variation of AdaFair that computes the
fairness weights based on individual weak learners.
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Datasets

Adult Census Bank Compass KDD Census
#Instances 45,175 40,004 5,278 209,285
#Attributes 14 16 9 41
Sen.Attr. Gender Marit. Status ~ Gender Gender
Class ratio (+:—) 1:3.03 1:7.57 1:1.12 1:15.11
Positive class >50K subscription  recidivism >50K

Employed datasets

We report on the average of 10 random splits [ZVGRG17], 50%
training and 50% testing set.
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AdaFair vs Baselines

B Zafaretal. = AdaBoost == AdaFair B Zafar etal. == AdaBoost == AdaFair

100 T Krasanakis etal. R SMOTEBoost Lo I Krasanakis etal. B SMOTEBoost
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Adult Census Bank

@ AdaBoost and SMOTEBoost do not consider fairness (high
Eq.Odds). R

@ Krasanakis et al. and Zafar et al. produce low TPRs and high
TNRs.
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Cumulative vs Non Cumulative Overall Performance
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@ AdaFair NoCumul has poor fairness performance.

@ AdaFair NoCumul is very unstable.
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Impact of parameter ¢

- Accuracy
Balanced Accuracy

0.6 06
---- Accuracy

Balanced Accuracy
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02 —e— TPR Non-Prot. 02 —e— TPR Non-Prot.
—4— TNR Prot. —&— TNR Prot.
TNR Non-Prot. TNR Non-Prot.
0.0 Y'Y o S—
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
c c
Adult Census Bank

@ For ¢ =0, the error rate is optimized and ¢ = 1 the balanced <=,

28
 yrreased

error rate. o

%



Summary
®00

Conclusions

Conclusions

@ AdaFair: fairness-aware boosting approach.

o Data distributions alter based on cumulative fairness.
o Deal with class-imbalance (indirectly).

@ Substantial difference in performance compared to baselines.

@ Cumulative fairness is superior to a non-cumulative approach.

v

@ Embed class-imbalance learning into training phase.

@ Investigate theoretical properties e.g., convergence
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Thanks.

Questions?

Contact: {iosifidis,ntoutsi}@L3S.de
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