V. Iosifidis¹ H.T. Thi Ngoc¹ E. Ntoutsi¹

¹University of Leibniz Hannover, Germany

DEXA Conference, October 4, 2019

Outline

- Bias Everywhere
- Can algorithms be biased?
 - Stream Classification: Concept Drifts and Fairness?
- Proposed Framework
 - Architecture
 - Discrimination Measure
 - Chunk Massaging
 - Chunk Re-weighting
 - Concept drift strategies
- 4 Evaluation
 - Baselines
 - Datasets
 - Results
- Summary

Nanny or Wife? 1

Evaluation

The Meeting Denial ²

	Emails Ignored		_ N	leetings Denied
Student Race and Gender	%	% Increase Relative to Caucasian Males	%	% Increase Relative to Caucasian Males
Caucasian Male	26.5%	N/A	52.4%	N/A
Caucasian Female	29.8%	12.5%	52.9%	1.1%
Black Male	32.5%	22.6%	61.3%	17.0%
Black Female	34.4%	29.8%	60.0%	14.6%
Hispanic Male	36.9%	39.2%	58.2%	11.1%
Hispanic Female	27.1%	2.3%	55.7%	6.3%
Indian Male	41.8%	57.7%	68.2%	30.2%
Indian Female	37.7%	42.3%	67.9%	29.7%
Chinese Male	36.7%	38.3%	66.8%	27.6%
Chinese Female	46.9%	77.0%	62.9%	20.2%

Copyright Katherine Milkman, Modupe Akinola and Dolly Chugh 2012

Can algorithms be biased?

- Decision support systems are data-driven.
- Decision rules are generated by data patterns.
- Data is often produced by humans.
- Algorithms can reinforce human prejudices.

"If data contains bias then algorithms which are trained on this data will also produce biased results."

Low or High Risk? 3

Two Petty Theft Arrests VERNON PRATER BRISHA BORDEN					
Prior Offenses 2 armed robberies, 1 attempted armed robbery Subsequent Offenses 1 grand theft	Prior Offenses 4 juvenile misdemeanors Subsequent Offenses None				
LOW RISK 3	HIGH RISK 8				

Two Drug Poss	ession Arrests
DYLAN FUGETT	BERNARD PARKER
Prior Offense 1 attempted burglary Subsequent Offenses	Prior Offense 1 resisting arrest without violence
3 drug possessions	Subsequent Offenses None
LOW RISK 3	HIGH RISK 10

³https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Stream Classification: Concept Drifts and Fairness?

Fairness in Streams

Stream Classification

Classification boundary changes as a result of model adaptation

Fairness-aware Stream Classification

Classification boundary MUST consider fair outcomes!

Architecture

Framework's Overview

Discrimination Measure

Basic Notation for Fairness

	(predicted) class			
Sensitive Attribute SA	Rejected	Granted		
s (Female)	DR_t (deprived rejected)	DG _t (deprived granted)		
<u>s</u> (Male)	FR _t (favored rejected)	FG _t (favored granted)		

Statistical Parity

$$disc_{S}(F, S_{t}) = \frac{FG_{t}}{FG_{t} + FR_{t}} - \frac{DG_{t}}{DG_{t} + DR_{t}}$$
(1)

Number of swaps

$$M_{t} = \frac{FG_{S_{t}} * (DG_{S_{t}} + DR_{S_{t}}) - DG_{S_{t}} * (FG_{S_{t}} + FR_{S_{t}})}{|S_{t}|}$$
(2)

Weight Estimation

$$W_t^{FG} = \frac{|\overline{s}_{S_t}| * |\{x \in S_t | (x.C = "granted")\}|}{|S_t| * |FG_{S_t}|}$$

(3)

Model Adaptation Strategies

- Accum&FullTrain: Keep history and update per original or corrected chunk.
- Reset&FullTrain: Discard history and update per original or corrected chunk.
- Accum&CorrectedTrain: Keep history and update per corrected chunk.
- Reset&CorrectedTrain: Discard history and update per corrected chunk.

Baselines

Methods

- B.NoSA (Baseline NoSensitiveAttribute): The classifier F
 does not employ SA neither in training nor in testing.
- B.RESET (Baseline Reset): Discard history in case of discrimination.

Datasets

Datasets

Synthetic dataset Discrimination FR DG 35 30 25 20 15 10 5 0 -5 20

Chunks

140 160 180

Results: Adult Census dataset

Massaging

Re-weighting

Results: Synthetic dataset

Massaging

Re-weighting

Summary

- Our framework is model agnostic.
- Our framework tackles discrimination and maintains relatively good performance.
- Massaging performs better than re-weighting.
- Future work: Deal with unfair outcomes in imbalanced streams.

Thanks.

Questions?

Contact: {iosifidis,ntoutsi}@L3S.de

