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Multi-Instance Data

• Multi-Instance Data 

• Aggregation-based  Methods

• Distance and Similarity Measures

• Multi-Instance Classification

• Clustering Multi-Instance Objects
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Multi-Instance objects describe:
• multiple components (e.g. CAD data)
• various appearances (e.g. proteins)
• set-valued objects (e.g. market baskets, teams) 

Differences to other structured objects: 
1. All instances are elements of the same features space (vs. Multi-View 

data)
2. Multi-Instance objects do not have an order (vs. time-series, sequences, 

trajectories)

What is Multi-Instance Data ?



DATABASE
SYSTEMS
GROUP

Examples for Multi-Instance Objects

Proteins 
• proteins consist of multiple amino acid sequences 

• each sequences is an instance

• a protein is a set of its sequences

Macro-Molecules
• varying spatial conformations

• each conformation is an instance

• the molecule is described by
a set of all possible conformations
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• CAD-components: 
set of spatial primitives

• HTML documents:
set of layout blocks 
(dom tree structure is dropped)

• Video data:
videos can be described by 
sets of shots (order is dropped)

Formally:
Object o is part of the power set of R: o = {r1,..,rn } 2R

where R is the feature space of instance (shortly instance space)

Sports Video

News Video

Further Examples
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• Aggregation-based  Approaches
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• Multi-Instance Classification
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Aggregation-based Approaches

Idea: Reduce the multi-instance object (i.e., set of instances) into a
single representative instance.

E.g., build the centroid

 simple method describing a set by its componentwise means

Problems:

• properties of the particular instances are lost

• cardinality of the set is lost

• outliers are not described well
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Aggregation-based Approaches

Conclusion:

Aggregation depends on the distribution of the objects.
• If all instances are drawn from the same distribution aggregation makes

sense.

• If instances might be drawn from different distributions, aggregation is not
suitable.

1. case: aggregation on suitable data 2. case: aggregation in unsuitable data
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Distance and Similarity Measures

Idea: Many data mining algorithms only need pairwise 
comparisons.

 Define distances and kernel-functions on multi-instance objects

There are multiple ways to compare multi-instance objects:
• How many instances of should be similar?

• Does there have to be a bijective mapping between the sets ?

=> There are multiple similarity measures which might make sense 
in  varying application areas.
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General Problem of comparing sets

Multi-instance objects comparison yields an assignment task:

Which instance in object X has to be compared to
which instance in object  Y ?

Given two objects X ={x1, x2, x3} and Y={y1, y2, y3}:
• Each xi can be compared to each yj.

• To how many yj has each xi to be similar?

• To how many xi has each yj to be similar?

• Usually: Each instance is assigned to at least one instance in the 
other object (often the closest).
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Hausdorff Distance

Idea: Each instance is covered by the closest instance from the other object.  The maximum
cover distance describes the distance of the two objects.

• minimum distance = most similar instance (smallest radius to cover the instance)

• maximum distance over all row /columns (worst case cover)

• maximum of row and column maximums achieves symmetry

Definition: The Hausdorff Distance

Let X, Y be two MI-objects and d(x,y) an instance distance measure over the feature 
space R, then the Hausdorff distance is defined as follows: 
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Informally, is the max distance out of the set 
of all distances between each point of a set 
to the closest point of a second set.

Complexity:
(assuming d(x,y) is computable in O(d))

 dYXO 
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Single Link or Minimal Hausdorff Distance

Idea: Use the closest pair of instances. 
Definition: Minimal Hausdorff Distance or Single Link Distance

Let X, Y be two MI-objects and let d(x,y) be an instance distance measure in 
the underlying feature space R, then the minimal Hausdorff or single link 
distance is defined as follows:
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Complexity:
(assuming d(x,y) is computable in O(d))
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Sum of Minimum Distances

Idea: Use the average distance of the closest pairs.

Definition: Sum of Minimum distances (SMD)

Let X, Y be two MI-objects and d(x,y) an instance distance measure over the feature 

space R, then the SMD distance is defined as follows:
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Complexity:
(assuming d(x,y) is computable in O(d))
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Minimal Matching Distance (MMD)

Idea: The distance between two sets is described by a cost-minimal bijection.

Definition:
Let O1, O2 be two MI-objects and let d(x,y) be an instance distance measure over the 
feature space R, then the Minimal Matching Distance is defined as follows:

w.l.o.g. let |O1| >|O2|. (O1) represents the set of all permutations of the instances in O1 

und w(oi,j) is a weighting term penalizing instances without a match.

Remark:
MMD is metric if w(oi,j) is large enough to prevent
unmatched instances, i.e., w(oi,j) has to be larger than any 

distance to any other instance.
=> Not matching any object is always worse than matching it
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Computing MMD

Method:  Solve a minimum weight perfect matching problem, e.g. with the 
Hungarian method (runtime complexity O(n3)).

Input
The cost matrix: built upon the instances of  the compared objects. The entries are 
the distances of the corresponding instances. 
The algorithm requires a square cost matrix: fill missing entries with w(oi,j) value.

Algorithm:
1. Subtract the minimum entry from each row
2. Subtract the minimum entry from each column
3. Draw lines through appropriate rows and columns so that all the zero entries 

of the cost matrix are covered and the minimum number of such lines is used
4. Test for optimality: If the min number of covering lines is n, an optimal 

assignment of zeros is possible and we are finished. Otherwise, proceed to 
Step 5.

5. Determine the smallest entry not covered by any line. Subtract this entry from 
each uncovered row, and then add it to each covered column. Return to Step 
3.
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Example: Computing MMD

10 12 20 21

10 12 21 24

14 17 28 30

16 20 30 35

0 2 10 11

0 2 11 14

0 3 14 16

0 4 14 19

0 0 0 0

0 0 1 3

0 1 4 5

0 2 4 8

0 0 0 0

0 0 1 2

0 1 4 5

0 2 4 8

1 1 0 0

0 0 0 1

0 1 3 4

0 2 3 7

1 1 0 0

0 0 0 1

0 1 3 4

0 2 3 7

2 1 0 0

1 0 0 1

0 0 2 3

0 1 2 6

2 1 0 0

1 0 0 1

0 0 2 3

0 1 2 6

Dmmd(O1,O2)=21+21+17+16 = 75

10 12 20 21

10 12 21 24

14 17 28 30

16 20 30 35

Matrix of pairwise
distances

Subtract
row min

Subtract
column min Mark all 0s

Add and subtract 
unmarked m  in Mark

add and subtract
min

compute result
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• Aggregation-based  Approaches
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• Multi-Instance Classification

• Clustering Multi-Instance Objects
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Multi-Instance Classification

Setting:
Training set D={(O, c)} where  O DB and cC.
Each object O is a MI object, i.e, it consists of a set of instances or bag of 
instances : Oi={oj,…,ok}
! Each object Oi has a class label, but the instances (oj) themselves are not 
explicitly labeled.

Goal:
Learn a model that predicts the class labels for unseen objects (i.e., sets or bags 
of instances)

Example:
Simple jailer problem (Chevaleyre & Zucker, 2001): 
“Imagine there is a locked door and we have N keychains, each containing a 
bunch  of keys. If a keychain (i.e., bag/set of keys) contains a key (i..e, instance) 
that can unlock the door, the keychain is useful. The learning goal is to build a
model that can predict whether a given keychain is useful or not.”
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Multi-Instance Classification

Challenge:
Which instances {oj ,.., ok} of Oi are responsible for the membership of Oi in class c?

Classic multi instance learning (Dietterich et al, 1997):
– Binary class: positive, negative
– Assumption: instances have hidden/unobserved class labels: positive or negative
– Assumption: An object Oi is labeled as positive, if and only if contains at least one

positive instance, otherwise it is negative.
– Important to define which class is the positive one, during application

General multi instance learning:
– Multi-class: arbitrary number of classes
– Instances can be relevant to multiple classes
– Class membership for object O might depend on any  instance-subset of O

24
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General Multi Instance Classification

Problem:

MI objects from the same class need not be completely similar (similar w.r.t to 

each instance). => Classes can be described in multiple different ways

General approach to multi-instance classifiers:
• Classes can be defined by “concepts”  on the instances

(football team = 1 goal keeper and 10 regular players)

• Each concept describes a group of instances

• Concepts might occur in a class or be completely absent

• The cardinality of the concepts in the class might play a role

(5 goal keepers and 1 regular player is not a football team)
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MI classification with given concepts

Input: 

• C: The class attribute

• DB: The set of multi-instance objects O being labelled with class labels from C

• K: the set of instance concepts

Solution: Two Stage Classification.

1. Classifier 1: Learns a mapping KL from instance oj to concept Kl : KL(oj) = Kl  K

=> Each multi-instance object O can be mapped to a distribution over the concepts K

2. Classifier 2: Learns a mapping CL from concept distribution to class CL(O) = ci ∈ C

26
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MI classification with unknown concepts

Input: 

• C: The class attribute

• DB: The set of multi-instance objects O being labelled with class labels from C

Problem: The concepts for defining a class are unknown => training a classifier to predict 

instance concepts is not possible

Solution approaches:

• Train an instance classifier predicting the likelihood that instance oi is element of any 
multi-instance object O having a class cj.

• Aggregate the prediction over all instances in O
(assumption: O was generated by drawing n times with replacement)

Remark:

• methods depend on reliability of the confidence values

• method assume the independency of the instances (multinomial distribution)
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General Multi-Instance Classification

Example: 2 classes, 3 “unknown“ concepts

linear instance classifier • Trainings set for instance classifier

• instances in concepts being typical for a class should be 
classified with a high confidence

• instances in ambiguous concepts should be classified 
with smaller confidence values

• the classifier often needs rather complex class borders
(small bias but larger likelihood of overfitting)
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General Multi-Instance Classification

Instance-classifier

conf. for instance

conf. for cmpl. object

C2

C2

C1

C1

Confidence of O for class Ck:                                                           (Bayes theorem)
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Example: Combination of the instance predictions
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Classical Multi-Instance Learning

Setting: There is one relevant concept Krel. All objects containing at least one instance oi O

with K(oi)=Krel belong to class “relevant”.

Examples: 

1- Does a molecule smell like musk? [Dietterich et al. 1998]

Molecules are described as sets of spatial conformations. If the molecule has a spatial 
conformation matching the musk receptor, it has a musky smell.

2- Search for lung embolisms

CT scanner generates a set of suspicious areas in the lung. If a least one of them is a lung 
embolism the patient needs treatment.
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Classical Multi-Instance Learning

Approach: Classify all single instances

=> if one is relevant, the complete object is relevant as well.

Problem: Labeled instances are only reliable for the non-relevant class.

Remark: Multi-instance learning corresponds to learning a classifier for the 
relevant concept 

• all instances of objects in the non-relevant class cannot be part of the relevant 
concept

• instances of objects from the relevant class can belong to both concepts

• at least one instance for each object has to belong to the relevant concept

relevant 

instances

non-relevant

instance from

a relevant object

instances from 

relevant 

objects

non-relevant instance
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Classical Multi-Instance Learning

Approaches to classical multi-instance learning

Find a region in the feature space which contains only relevant instances (no 
negative samples) and contains at least one instance from each relevant object.

• Solution space is constructed by all sets of instances
containing one instance from each objects.
(assume: k objects having n instances => nk solutions)

• Each solution can be used to demark the relevant
area of the feature space

• It cannot be guaranteed that there is one area without
any non-relevant samples

• Irrelevant features, learning bias etc. also influence the quality
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Classical Multi-Instance Learning

Expectation Maximization Diverse Density classification (EM-DD)
Idea: Describe the relevant concept by an instance h and weights sd for weighting 

the influence of the features D={d1,..,dm}.

Predicting the object class is done by the max confidence of any instance in O:

where  l=0 codes „relevant“ and l=1 codes „irrelevant“

The quality of the classifier for set DB can be described by the
Negative Logarithmic Diverse Density (NLDD) :
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Classical Multi-Instance Learning

EM-DD training algorithm:

init h //e.g. centroid of a samples of the relevant instances, si = 0.1 

While( NLDDnew < NLDDold)

FOR ALL Oi in DB mit CL(Oi) = „relevant“ DO

// optimization of weights 
// by gradient descent

NLDDold = NLDDnew

NLDDnew = NLDD(h‘,D)

h = h‘

return h

Remark:
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Multi-Instance Classifier

Conclusions:

general Multi-Instance Classification

• only a view dedicated approaches are published

• most approaches are based on distance measures or kernels

Classical Multi-Instance Learning

• Large effort in the research community
– Citation-kNN and Bayes-kNN (nearest neighbor-based approaches)

– Multi-Instance decision trees and rule-based classifiers

– Neural Networks for multi-instance objects

 EM-DD (showed most promising results without any meta-learning)

• General benchmark is the musk use case !!
More practical results showed good results for general MI-learners
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Multi-Instance Clustering 

• MI-Objects can be clustered based on distance-based methods 
such as k-medoid, DBSCAN, OPTICS, etc. 
– only applicable to purely distance-based methods (cluster model ?)

(e.g., k-Means cannot be used due to the lack of centroids)

– selecting a well-suited distance measure is very important

– This approach does not yield expressive cluster models

• Idea: Use the concept model from classification  Concept-
based multi-instance clustering
– Instances belong to certain concepts

– MI objects can be described by distribution over the different concepts

=>  clusters can be composed by objects having similar concept 
distributions
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Concept-Based Multi-Instance Clustering

Idea: 
• Each instance oi  O belongs to a concept.
• Multi-instance (MI-)clusters are distributions over the set of concepts.

Description of a MI-cluster = cluster description of the contributing concepts.

Concept 1 Concept 2

Concept 3

MI-Cluster1 contains instances from  concept 
1 and concept 2.

MI-Cluster2 contains instances from concept 
2 and concept 3.
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Politics Weather

Sports Video

Concept-Based Multi-Instance Clustering

Example: Video Data
• Videos are represented as sets of 

Shots/Scenes  (MI objects)

• Shots belong to a concept (e.g. sports, 
weather,..)

• An MI-cluster contains video with shots 
belonging to the same concepts:

– Sport-videos contain sports shots.

– Weather-videos contain weather shots.

– News videos contains sports, weather, 
politics,...-shots.

News Video

Sports

MI-Clusters

Concepts
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A MI-EM Algorithms (Kriegel et al, 2006)


DB

DB oI 

Instance Model:

An Instance Model IM for the instance set IDB is given by a mixture 

model of k statistical processes that can be described by:

• a prior probability Pr[ kj ] for each process kj.

• the necessary parameters for each process kj, e.g. a mean vector j

and a  covariance matrix j for Gaussian processes.

These k processes correspond to the concepts.

Instance set: 

• DB: a set of MI-objects o = {i1,…,ik}

• IDB : the instance set of DB, is the union of all multi-instance objects 
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A MI-EM Algorithm
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Multi-Instance Cluster Model M

• A set C of clusters over the instance model IM.

Each MI-cluster c C is described as follows:

• a prior probability Pr [c],

• a cardinality distribution Pr [Card(o)|c]

• a conditional distribution of concepts  Pr [ i  k | i  o  c ]

(shortly: Pr [k|c] ) for each concept k in IM.

The probability of an object o in the model M is computed as follows:

the a-posteriori probability of o and cluster c is given as:


 


oi IMk

ikckcoCardc
o

oc ]|Pr[]|Pr[]|)(Pr[]Pr[
]Pr[

1
]|Pr[

42



DATABASE
SYSTEMS
GROUP

A MI-EM Algorithm

Example: 2 MI-Cluster

Cluster 1: 

50 %  prior probability

expected number if instances: 2

Cluster 2:

50 % prior probability

expected number if instances : 5

concept1 concept2 concept3

0.1 0.89 0.01

concept1

concept2

concept3

concept1 concept2 concept3

0.2 0.01 0.79

3

1 2

4

1 3

Instance Model IM
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A MI-EM Algorithm

Overview of the algorithm: 

• Step 1: Compute a mixture model (IM) on the instance set IDB

(build concepts)

• Step 2: Compute an initial model for clustering MI objects based 
on their concept distribution

• Step 3: Use EM to optimize the cluster model
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A MI-EM Algorithm

Step 1: Derive a mixture model for the instance set

Build  IDB and use EM-clustering to derive IM (the concepts).
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Step 2: Find a start partitioning of MI-objects

• For each MI-object O in DB build a “Confidence Summary Vector” 
CSV(O).

– it is a k-dimensional vector, k=#concepts

– the j-th component of CSV (O) is defined as:

• Use k-means to group the CSVs to an initial cluster model
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A MI-EM Algorithm

Step 3: Optimize the partitioning through EM
The start partitioning (step 2) is optimized using EM

E-Step: Compute the log-likelihood of the current model M.

M-Step: apply the following updates:

update prior probability of MI-cluster ci:

update cardinality distribution:

update concept distribution:
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Summary: Multi-Instance Data Mining

• Aggregation is useful for homogeneous sets

• Multiple distance and similarity function for MI objects

• Distance measures can be plugged into various algorithms

• Selecting the right distance measure is essential to the success

• Concept-based approaches abstract from sets of instances to 
concepts and apply data mining to the concept distribution

• Concept-based approaches rely on a suitable set of concepts and 
methods to assign instances to these concepts

47



DATABASE
SYSTEMS
GROUP

References

• Kriegel H.-P, Pryakhin A., Schubert M. : An EM-Approach for Clustering Multi-Instance 
Objects, Proc. 10th Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD 
2006), Singapore, 2006. 

• Dietterich T.G., Lathrop R.H., Lozano-Perez T. : Solving the Multiple Instance Problem 
with Axis-Parallel Rectangles, Artificial Intelligence, vol. 89, num.1-2, Seiten 31-71, 1997

• Weidmann N., Frank E., Pfahringer B. : A Two-Level Learning Method for Generalized 
Multi-instance Problems. ECML 2003:  S. 468-479 

• Gärtner T., Flach P.A., Kowalczyk A., Smola A.j. : Multi-Instance Kernels, Proceedings of 
the 19th International Conference on Machine Learning, p. 179-186, 2002 

• Zhang Q., Goldman S. : EM-DD: An improved multiple-instance learning technique.  
Neural Information Processing Systems 14, 2001.

• Eiter T., Mannila H. : Distance Measures for Point Sets and Their Computation. Acta 
Informatica, 34(2):103-133, 1997.

• Brecheisen S, Kriegel H.-P., Kröger P., Pfeifle M., Schubert M. : Using Sets of Feature 
Vectors for Similarity Search on Voxelized CAD Objects, Proc. ACM SIGMOD Int. Conf. on 
Management of Data (SIGMOD'2003), San Diego, CA, 2003 

48


