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1. Introduction and challenges of high dimensionality
2. Feature Selection

3. Feature Reduction and Metric Learning

[4. Clustering in High-Dimensional Data ]
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Challenges for Clustering High-Dimensional Data

DATABASE
GROUP

e Customer Recommendation / Target Marketing
— Data
e Customer ratings for given products

e Data matrix:
products (hundreds to thousands)

AN
4 A

customers = —

(millions) < \ rating of the ith
product by the jth

customer

(.

— Task: Cluster customers to find groups of persons that share similar
preferences or disfavor (e.g. to do personalized target marketing)

e Challenge:

customers may be grouped differently according to different
preferences/disfavors, i.e. different subsets of products
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Challenges for Clustering High-Dimensional Data

DATABASE
GROUP

e Relevant and irrelevant attributes
— Not all features, but a subset of the features may be relevant for clustering

— Groups of similar (“dense”) points may be identified when considering only
these features

irrelevant attribute

e
)

1
1
A 4

v

relevant attribute/
relevant subspace

— Different subsets of attributes may be relevant for different clusters
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Challenges for Clustering High-Dimensional Data

DATABASE Mot
GROUP £

Effect on clustering:
e Usually the distance functions used give equal weight to all dimensions
e However, not all dimensions are of equal importance

e Adding irrelevant dimensions ruins any clustering based on a distance
function that equally weights all dimensions
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Challenges for Clustering High-Dimensional Data

DATABASE
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GROUP

different attributes are relevant for different clusters

again
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Challenges for Clustering High-Dimensional Data

LMU

Task: Cluster test persons to find groups of individuals with similar correlation
among the concentrations of metabolites indicating homogeneous metabolic

behavior (e.g. disorder)

e Challenge:

different metabolic disorders appear through different correlations of
(subsets of) metabolites

Concentration
of Metabolite 2
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Challenges for Clustering High-Dimensional Data

DATABASE |
GROUP

e Correlation among attributes
— A subset of features may be correlated

— Groups of similar (“dense”) points may be identified when considering this
correlation of features only
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— Different correlations of attributes may be relevant for different clusters
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Challenges for Clustering High-Dimensional Data
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GROUP

Why not feature selection?
— (Unsupervised) feature selection is global (e.g. PCA)

— We face a local feature relevance/correlation: some features (or
combinations of them) may be relevant for one cluster, but may be
irrelevant for a second one
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Challenges for Clustering High-Dimensional Data
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Use feature selection before clustering
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Cluster first and then apply PCA

Challenges for Clustering High-Dimensional Data
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Challenges for Clustering High-Dimensional Data

Problem Summary

e Curse of dimensionality/Feature relevance and correlation
- Usually, no clusters in the full dimensional space

- Often, clusters are hidden in subspaces of the data, i.e. only a subset of features

is relevant for the clustering

LMU

- E.g. a gene plays a certain role in a subset of experimental conditions

e Local feature relevance/correlation

- For each cluster, a different subset of features or a different correlation of

features may be relevant
- E.g. different genes are responsible for different phenotypes

e QOverlapping clusters

- Clusters may overlap, i.e. an object may be clustered differently in varying

subspaces

- E.g. a gene plays different functional roles depending on the environment

Knowledge Discovery in Databases Il: High-Dimensional Data
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Challenges for Clustering High-Dimensional Data

DATABASE
GROUP

e General problem setting of clustering high dimensional data

Search for clusters in
(in general arbitrarily oriented) subspaces
of the original feature space

e Challenges:

e Find the correct subspace of each cluster
- Search space:
= all possible arbitrarily oriented subspaces of a feature space
= infinite
e Find the correct cluster in each relevant subspace

- Search space:

= “Best” partitioning of points (see: minimal cut of the similarity graph)
= NP-complete [SCH75]

Knowledge Discovery in Databases Il: High-Dimensional Data
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Challenges for Clustering High-Dimensional Data

DATABASE

GROUP

e Even worse: Circular Dependency

e Both challenges depend on each other

e |n order to determine the correct subspace of a cluster, we need to know
(at least some) cluster members

e |n order to determine the correct cluster memberships, we need to know
the subspaces of all clusters

e How to solve the circular dependency problem?
e |ntegrate subspace search into the clustering process

e Thus, we need heuristics to solve

- the clustering problem
- the subspace search problem

simultaneously

Knowledge Discovery in Databases Il: High-Dimensional Data
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Overview of the discussed methods
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B e s o mm s mm on s mm s s mm s s s s mm o,

— CLIQUE [AGGR98] F|nd all clusters in all subspaces.
— SUBCLU [KKKO04] Axis-parallel subspaces

— PROCLUS [APW+99] Each point is assigned to one

— PREDECON[BKKKO4] subspace cluster or noise.
______________________________ AXIS parallel subspaces

e Top-Down Approaches: 'Correlatlon Clustering !

~_._._._._._._._._._._._._._._._'

— ORCLUS[AYO00] Each point is assigned to one

— 4C [BKKZ04] subspace cluster or noise.
Arbitrary oriented subspaces

e Pattern based clustering

Knowledge Discovery in Databases II: High-Dimensional Data 15
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Overview of the discussed methods

GROUP 5

(e Bottom- -Up approaches: Subspace Clusterlng«\ h

— CLIQUE [AGGR98] Find all clusters in all subspaces.

— SUBCLU [KKKO04] Axis-parallel subspaces
\ %

— PROCLUS [APW+99] Each point is assigned to one

— PREDECON[BKKKO4] subspace cluster or noise.
______________________________ AXIS parallel subspaces

e Top-Down Approaches: 'Correlatlon Clustering !

~_._._._._._._._._._._._._._._._'

— ORCLUS[AYO00] Each point is assigned to one
— 4C [BKKZ04] subspace cluster or noise.

Arbitrary oriented subspaces

e Pattern based clustering
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Bottom-up Algorithms

DATABASE
GROUP

e Rational:

— Start with 1-dimensional subspaces and merge them to compute higher
dimensional ones.

— Most approaches transfer the problem of subspace search into frequent
item set mining.

e The cluster criterion must implement the downward closure property

— If the criterion holds for a k-dimensional subspace S, then it also holds for any (k-
1)-dimensional projection of S

— Use the reverse implication for pruning:

If the criterion does not hold for a (k—1)-dimensional projection of S, then the
criterion also does not hold for S

e Apply any frequent itemset mining algorithm (e.g. APRIORI)

— Some approaches use other search heuristics like best-first-search,
greedy-search, etc.

e Better average and worst-case performance
e No guaranty on the completeness of results

Knowledge Discovery in Databases Il: High-Dimensional Data
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Bottom-up Algorithms

Downward-closure property

A,

LMU

if Cis a dense set of points in subspace S,
then Cis also a dense set of points in any subspace T S

MinPts = 4 Ay

(S

p and g density-connected in {A,B}, {A} and {B}

Knowledge Discovery in Databases II: High-Dimensional Data
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Bottom-up Algorithms

Downward-closure property

(MU

the reverse implication does not hold necessarily
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CLIQUE [AGGR98] 1/6

LMU

CLIQUE serves two purposes:
1. Identify subspaces containing clusters
2. Identify the clusters g%
Approach i A
e C(Clusters are “dense regions” in the feature space .
e Partition the feature space into ¢ equal sized parts in -
each dimension. ;3[} % |3c| Ls 20 45 50 55 60 65 70

e A unitisthe intersection of one interval from each dimension

Dense unit: If unit u contain more than t objects, T = density threshold

Clusters are maximal sets of connected dense units (e.g., A U B)

Knowledge Discovery in Databases Il: High-Dimensional Data

age

20



CLIQUE:
s | 1. ldentify subspaces containing clusters 2/6 LMU

w

GROUP

Task: Find dense units
e Greedy approach (Bottom-Up), comparable to APRIORI for finding frequent
itemsets (Downward Closure):
— Determine 1-dimensional dense units D,
— Candidate generation procedure:

e Based on D, ,, the set of (k-1) dimensional dense units

e Generate candidate set C, by self joining D, ,

— Join condition: units should share first k-2 dimensions.

e Discard those candidates which have a k-1 projection not included in D, ,

¢ Downward Closure for dense grid units
— If unit uis dense in a k-dimensional space then each projection of the unit into a k-1
dimensional subspace has to be dense as well.

— Inversion: If any (k-1) dimensional projection of u is not dense, then u cannot be

dense in the k-dimensional feature space

Knowledge Discovery in Databases Il: High-Dimensional Data



w

ommens: | CLIQUE: Example 3/6
LMU

SYSTEMS
GROUP

i T B 2-dim. dense unit

] 3-dim. candidate unit

2-dim. unit which has to be checked

e |fall ¢ k-1 dimensional units are dense
=> check candidate on data set

e heuristics reduction of uninteresting subspace
=> prevents the exponential growth of interesting subspaces

Knowledge Discovery in Databases Il: High-Dimensional Data 22
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«mes: | CLIQUE: 2. Identify clusters 4/6

GROUP

Task: Find maximal sets of connected dense units

Given: a set of dense units D in the same k-dimensional subspace S

Output: A partition of D into clusters D,, ..., D,

e The problem is equivalent to finding connected components in a graph
— nodes: dense units

— edges: there is an edge if the corresponding dense units have a common
face (neighboring units)

— Depth-first search algorithm: Start with a unit v in D, assign it to a new
cluster ID and find all the units it is connected to. Repeat if there are nodes
not yet visited.

e Time complexity: Assuming the dense units fit in memory (e.g. in a hash tree)
For each unit, we have to check 2k neighbors to find connected units

= number of tree accesses: O (2kn), where n: #dense unitsin S

Knowledge Discovery in Databases Il: High-Dimensional Data 23



w

DATABASE
SYSTEMS
GROUP

runtime vs.

number of objects n

20000
15000
10000

5000 )

I
— SeC

I | | | |
"tups-scale" ©—

no. of tuples (x1000)
| | | | |

0

100 150 200 250 300 350 400 450 500 \UE

<

CLIQUE: Experimental Evaluation 5/6

LMU

runtime vs. dimensionality d
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CLIQUE: Discussion 6/6

Input: € and t specifying the density threshold
Output: all clusters in all subspaces, clusters may overlap

LMU

Uses a fixed density threshold for all subspaces (in order to ensure the

downward closure property)

Simple but efficient cluster model
[GI0I0]I0]

Knowledge Discovery in Databases Il: High-Dimensional Data
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| SUBCLU [KKK04] 1/6

GROUP

Motivation:
Drawbacks of a grid-based regions:
e Positioning of the grid influences the clustering

e Only rectangular regions
e Selection of £ and tis very sensitive | . &4
Example: o ! i o

| S S ©F K S N B

— i RN | ' :

Cluster for r=4 '..i,. o ¢
(is C, a cluster?) T ;".’;'.; 8o T T

, ! ! ! ' C2

for 7> 4: no cluster e B o e

(Cis lost) e | I e o d

= define regions based on the neighborhood of data points
—> use density-based clustering

Knowledge Discovery in Databases II: High-Dimensional Data
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SUBCLU: Cluster model 2/6

Density-based cluster model of DBSCAN
Clusters are maximal sets of density-connected points

Density connectivity is defined based on core points

LMU

Core points have at least MinPts points in their &-neighborhood

MinPts=5
(@) (o) (o) ®
© o ° e
o 9 o ®
pis core

Detects clusters of arbitrary shapes and positionings (in the corresponding subspaces)

p is core; o is directly density reachable from p; q is
density reachable from o is o core?

MinPts=5

p and g are density connected

Naive approach: Apply DBSCAN in all possible subspaces = exponential (2)

Idea: Exploit clustering information from previous step (subspaces)

Density-connected clusters are not monotonic
But, density connected sets are monotonic!

Knowledge Discovery in Databases Il: High-Dimensional Data
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SUBCLU: Downward closure of density connected

wnes | sets 3/6 LMU

GROUP

If Cis a density connected set in subspace S then Cis a density connected set in any

subspace T c S.
But, if Cis a cluster in S, does not need to be a cluster in T < S — maximality might be violated

All clusters in a higher-dimensional subspace will be subsets of the clusters detected in this

first clustering.

¢: circles indicate

{ MinPts = 4
\)@ T\

B .
w .-_.I 1 I W " l- ;:l—

(b) p and g are not density-connected

{a) p and g are density-connected via o

p and g density connected in {A,B}. p and g not density connected in {B}.

Thus, they are also density connected in {A} and {B}
although they are density connected in {A}.

Knowledge Discovery in Databases II: High-Dimensional Data

Thus, they are not density connected in{A,B},
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SUBCLU: Algorithm 4/6

LMU

SUBCLU(Set of objects DB, real g, integer minPts)

Init:

e For each 1-D subspace S generate all its clusters by applying DBSCAN(DSB, S, €, minPts)
S,: set of 1-D subspaces containing clusters ,C;:set of all sets of clusters in 1-D subspaces

e While C, is not empty

— Build: build (k+1)-dimensional candidate spaces (CandsS,,,) from k-dimensional subspaces S,:
0 Combine subspaces with (k-1) dimensions in common
O Prune candidates having a k-dimensional subspace not in S, (i.e., without any clusterin S,)

e  On each candidate subspace cand — CandS,,,, take one k-D subspace Tc Cand and simply call DBSCAN(cI,
cand,g,minPts) for each cluster c/ in T to generate Ccad

. . Skrt = 81 Ueand
0 Ifany clusteris found, add candidate subspace to the k+1 subspaces and collect the clusters (,:: 1‘ o C:»+11L I;f:id
it = Craq UC

O Else prune the candidate

e Terminate if no k dimensional subspace contains any cluster (i.e., C, is empty)
Remark: Algorithmic pattern is rather close to APRIORI for frequent item set mining.

Knowledge Discovery in Databases Il: High-Dimensional Data
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onnense | SUBCLU: Example 5/6

GROUP

A DBSCAN(DB, S, €, MinPts): computes all density-
o connected clusters w.r.t. € and MinPts in
Ao fe : o dataset DB and subspace S
© o
° S = {{A}, {B}}
C, = {Al, A2, B1, B2, B3}
(0]
..
& e
Al o ©
.. oo
OO [(00)0) [(00)] () B
B1 B2 B3

CandS, = {{AB}! = S,={{AB}}

e Call DBSCAN(c, U, €, MinPts) for subspace U < Cand having the smallest
amount of data objects in clusters (example: U = {B})

e Reduces the amout of range queries for each call of DBSCAN

Knowledge Discovery in Databases II: High-Dimensional Data
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SUBCLU: Discussion 6/6

DATABASE

GROUP

— Algorithm
e All subspaces that contain any density-connected set are computed
using the bottom-up approach

e Density-connected clusters are computed using a specialized DBSCAN
run in the resulting subspace to generate the subspace clusters

— Discussion
e |nput: € and MinPts specifying the density threshold
e Qutput: all clusters in all subspaces, clusters may overlap
e Uses a fixed density threshold for all subspaces

e Advanced but costly cluster model

Knowledge Discovery in Databases Il: High-Dimensional Data

31



w

DATABASE
GROUP

Bottom-up Algorithms: Discussion

The key limitation: global density thresholds

Usually, the cluster criterion relies on density

In order to ensure the downward closure property, the density threshold must
be fixed

Consequence: the points in a 20-dimensional subspace cluster must be as dense
as in a 2-dimensional cluster

This is a rather optimistic assumption since the data space grows exponentially
with increasing dimensionality
Consequences:

— A strict threshold will most likely produce only lower dimensional clusters

— A loose threshold will most likely produce higher dimensional clusters but also a
huge amount of (potentially meaningless) low dimensional clusters

Knowledge Discovery in Databases Il: High-Dimensional Data 32
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Overview of the discussed methods
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B e s o mm s mm on s mm s s mm s s s s mm o,

— CLIQUE [AGGR98] F|nd all clusters in all subspaces.
— SUBCLU [KKKO04] Axis-parallel subspaces

& Top-Down Approaches: Projecied Clustering— O\

— PROCLUS [APW+99] Each point is assigned to one

— PREDECON[BKKKO4] subspace cluster or noise.
Axis—paraIIeI subspaces

e Top-Down Approaches: 'Correlatlon Clustermg

~_._._._._._._._._._._._._._._._'

— ORCLUS[AYO00] Each point is assigned to one
— 4C [BKKZ04] subspace cluster or noise.
k Arbitrary oriented subspacy

e Pattern based clustering
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w

DATABASE
SYSTEMS
GROUP

Top-down Algorithms

LMU

Rational:

e (luster-based approach:

Learn the subspace of a cluster in the entire d-dimensional feature space

Start with full-dimensional clusters

Iteratively refine the cluster memberships of points and the subspaces of the cluster
PROCLUS[APW+99], ORCLUS[AY00]

e |nstance-based approach:

Learn for each point its subspace preference in the entire d-dimensional feature
space

The subspace preference specifies the subspace in which each point “clusters best”
Merge points having similar subspace preferences to generate the clusters
PREDECON[BKKKO04] 4C[BKKZ04]

Knowledge Discovery in Databases Il: High-Dimensional Data 34
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(= Top-down Algorithms: The key problem

GROUP

How should we learn the subspace preference of a cluster or a point?

e Most approaches rely on the so-called “locality assumption”

— The subspace is usually learned from the local neighborhood of cluster
representatives/cluster members in the entire feature space:

e Cluster-based approach: the local neighborhood of each cluster representative is
evaluated in the d-dimensional space to learn the “correct” subspace of the
cluster

e Instance-based approach: the local neighborhood of each point is evaluated in
the d-dimensional space to learn the “correct” subspace preference of each
point

e The locality assumption: the subspace preference can be learned from the local
neighborhood in the d-dimensional space

— Other approaches learn the subspace preference of a cluster or a point from
randomly sampled points

Knowledge Discovery in Databases Il: High-Dimensional Data 35
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ool Overview of the discussed methods

SYSTEMS LMU Sl =
GROUP :

B e s o mm s mm on s mm s s mm s s s s mm o,

— CLIQUE [AGGR98] F|nd all clusters in all subspaces.
— SUBCLU [KKKO04] Axis-parallel subspaces
e Top-Down Approaches:: PrOJected CIusterlngQ\ A
— PROCLUS [APW+99] Each point is assignhed to one
— PREDECON[BKKKO4] subspace cluster or noise.
\_ Axis-parallel subspaces )
............... | 2
e Top-Down Approaches: 'Correlatlon Clustering !
— ORCLUS[AYOO] Each point is assigned to one
— 4C [BKKZO4] subspace cluster or noise.

Arbitrary oriented subspaces

e Pattern based clustering
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PROCLUS [APW+99] 1/6

LMU

e PROjected CLUStering

— Cluster-based top-down approach: we learn the subspace for each cluster

— K-medoid cluster model

e Cluster is represented by its medoid
e To each cluster a subspace (of relevant attributes) is assigned

e Each point is assigned to the nearest medoid (where the distance to
each medoid is based on the corresponding subspace of the medoid)

e Points that have a large distance

to their nearest medoids are /f’.,‘,‘
. o . A // ,,‘\ ,./,/1
classified as noise PR

\ 4
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== | PROCLUS: Algorithm —Initialization phase 2/6
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GROUP

 3-phase algorithm: initialization, iterative phase, refinement

— Input:
0 The set of data points
O Number of clusters, denoted by k
0 Average number of dimensions for each clusters, denoted by L

— Output:
0 The clusters found, and the their associated dimensions

e [Phase 1] Initialization of cluster medoids
— Ideally we want a set of centroids, where each centroid comes from a different

cluster.
— We don’t know which are these k points though, so we choose a superset M of b*k
medoids such that they are well separated.

e Chose a random sample (S) of a*k data points

e Out of S, select b*k points (M) by greedy selection : medoids are picked iteratively so that
the current :medoid is well separated from the medoids that have been chosen so far.

— Input parameters a and b are introduced for performance reasons

Knowledge Discovery in Databases Il: High-Dimensional Data 38
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PROCLUS: Algorithm —Iterative phase 3/6

LMU

e [Phase 2] Iterative phase (works similar to any k-medoid clustering)

— k randomly chosen medoids from M are the initial cluster medoids

— ldea: replace the “bad” medoids from other points in M if necessary = we should
be able to evaluate the quality of the clustering by a given set of medoids.

Procedure:

(0]

(0]
(0]
(0]

Find dimensions related to the medoids

Assign data points to the medoids

Evaluate the clusters formed

Find the bad medoid, and try the result of replacing bad medoid

Knowledge Discovery in Databases Il: High-Dimensional Data
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PROCLUS: Algorithm —Iterative phase
— Find cluster dimensions 4/6

LMU

For each medoid m;j, let 6 be the nearest distance to its closest medoid
All the data points within 6 will be assigned to the medoid m; (L, locality of m,)

locality of A f

Intuition: to each medoid we want to associate those dimensions where the
points are closed to the medoid in that dimension

Compute the average distance along each dimension from the points in L to m..

|
— Let X;; be the avg distance along dimension j

Calculate for m; the mean Y; and standard deviation c; of X;

Calculate Zij= (Xi,j - Yi) / Oj

Choose k x | smallest values Z;; with at least 2 chosen for each medoids
Output: A set of k medoids and their associated dimensions

Knowledge Discovery in Databases Il: High-Dimensional Data
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PROCLUS: Algorithm —Iterative phase
— Assigning data points —evaluate clusters 5/6

LMU

Assign each data point to its closest medoid using Manhattan segmental
distance (only relevant dimensions count)

Manhattan segmental distance (A variance of Manhattan distance): For any two
points x1,x2 and any set of dimensions D, |D|< d:

Zie
dD(X19X2): >

How to evaluate the clusters?

Xpi = Xz,i‘
D

— Use average Manhattan segmental distance from the points in C, to the centroid of C,

along dimensionj_ & - Z:(:k‘ci"wi
~|D| N

Replace bad medoids with random points from M

Terminate if the clustering quality does not increase after a given number of
current medoids have been exchanged with medoids from M (it is not clear, if
there is another hidden parameter in that criterion)

Knowledge Discovery in Databases Il: High-Dimensional Data 41
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PROCLUS: Algorithm —Iterative phase 6/6
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e [Phase 3] Refinement

— Reassign subspaces to medoids as above (but use only the points assigned to each
cluster rather than the locality of each cluster, i.e., C, not L,)

— Reassign points to medoids
— Points that are not in the locality of any medoid are classified as noise

Knowledge Discovery in Databases II: High-Dimensional Data
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PREDECON[BKKKO04] 1/3
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GROUP

Instance-based top-down approach: we learn the subspace for each instance

Extends DBSCAN to high dimensional spaces by incorporating the notion of
dimension preferences in the distance function

For each point p, it defines its subspace preference vector:
.1 Ur VAR}. > 0

W, = (. wo....1y W, =
P { j {K‘ i VAR, <O

VAR is the variance along dimension jin N_.(p):

> gen. (p (dist(ma, (p). 7a,(q)))?

VAR, (N.(p)) =

N-(p)] B

v

6, k (k>>1) are input parameters

Knowledge Discovery in Databases II: High-Dimensional Data




e Preference weighted distance function:

d

diSt'P(pa Q) - J Z ul’i ' (ﬂ'Ai (P) — TA; (Q))2

=1

distprer(p,q) = max{disty(p, q). disty(q,p)}
e Preference weighted €-neighborhood:

NP (p) = {z € D|distyrer(p,x) < £}

5/_‘1:
simple ' \ preference weighted
e-neighborhood e ée }.e g-neighborhood




w

DATABASE
SYSTEMS
GROUP

PREDECON[BKKKO04] 3/3

e Preference weighted core points:

Core!™ (p) & PDIM(NL(p)) < AA |NT(p)| = p

den

e Direct density reachability, reachability and

connectivity are defined based on preference

weighted core points

e A subspace preference cluster is a maximal

density connected set of points associated

with a certain subspace preference vector.

Knowledge Discovery in Databases Il: High-Dimensional Data
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Overview of the discussed methods

DATABASE ozt
SYSTEMS LM u . . .. | :
GROUP :

B e s o mm s mm on s mm s s mm s s s s mm o,

— CLIQUE [AGGR98] F|nd all clusters in all subspaces.
— SUBCLU [KKKO04] Axis-parallel subspaces

— PROCLUS [APW+99] Each point is assigned to one
— PREDECON[BKKKO4] subspace cluster or noise.
Axis-parallel subspaces
(o Top-Down Approaches:iCorreIation Clustering ! A
— ORCLUS[AYOO] Each point is assigned to one
— 4C [BKKZ04] subspace cluster or noise.
\_ Arbitrary oriented subspaces /

e Pattern based clustering
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DATABASE correlation CIUStering

GROUP

e Motivating example:
— Cluster 3 exists in an axis-parallel subspace

— Clusters 1 and 2 exist in (different) arbitrarily oriented subspaces: if the cluster

members are projected onto the depicted subspaces, the points are “densely
packed”

subspace for
cluster 1

N
& 3
o e
cluster 3 S 8
4---.-4@:'-‘"*"‘3, %
o o200
Tog o ° @
° ng
subspace for 5
cluster 3 -
o Q.g,@ iﬂ. subspace for
e AN cluster 2
o = * o

e Subspace clustering and projected clustering algorithms find axis-parallel
subspaces

e Correlation clustering for finding clusters in arbitrary oriented subspaces

Knowledge Discovery in Databases II: High-Dimensional Data
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¥ | ORCLUS[AY00] 1/3
SéSR'Ic')Ell}/FI,S I_MU

ORCLUS (arbitrarily ORiented projected CLUSter generation) first approach to
generalized projected clustering

A generalized projected cluster is a set of vectors E and a set of points C such that the
points in C are closely clustered in the subspace defined by the vectors E.

— Eisasetof orthonormal vectors, |E|<d
Input:
e The number of clusters k
e The dimensionality of the subspace of the clusters, | (=]|E|)
Output
e A set of k clusters and their associated subspaces of dimensionality |

Main idea

» To find the subspace of a cluster C,, compute the dxd covariance matrix M, for C, and
determine the eigenvectors. Pick the |_ eigenvectors with the smallest eigenvalues.

e Relies on cluster-based locality assumption: subspace of each cluster is learned from its
members
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ORCLUS: Algorithm 2/3

similar ideas to PROCLUS [APW+99]
k-means like approach
start with k. > k seeds

assign points to clusters according to distance function based on
the eigensystem of the current cluster (starting with axes of data
space, i.e. Euclidean distance)

The eigensystem is iteratively adapted based on the updated
cluster members

Reduce the number of clusters k_in each iteration by merging
best-fitting cluster pairs
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¥ | ORCLUS: Merging clusters 3/3

e Each cluster C, existsin a / .
i i , clustet :
possible dlffere_nt subspace S, e"geﬁsystem o 0 Cigensysion o
how do we decide what to 00® 5% & ® Cluster 5
merge? @
e Compute the subspace of their

union GUC, eigenvectors g

corresponding to the smallest | . Huster 2
eigenvalues) 5 eigensystem cluster 11 Cluster
0.0 % s O
e Check the cluster energy of o® @ 0 © °
CUC,in this subspace (mean g
>
square distance of the points 2 S

from the centroid in this
subspace) — indicator of how
well the points combine

Assess average distance in all merged pairs of clusters and finally merge the best fitting
pair, that with the smallest cluster energy

Continue until the desired number of clusters, k, is achieved.
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4C = Computing Correlation Connected Clusters
Idea: Integrate PCA into density-based clustering.

Approach:

e Check the core point property of a point p in the complete feature space
e Perform PCA on the local neighborhood S of p to find subspace
corpplst=x

PCA factorizes M, into M, =V E VT
V: eigenvectors
E: eigenvalues

A parameter 6 discerns large from small
eigenvalues.

* CorDim(S)=#eigenvalues>6

* In the eigenvalue matrix of p, large eigenvalues
are replaced by 1, small eigenvalues by a value k
>>1 - adapted eigenvalue matrix E’
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4C: Distance measure
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GROUP

e effect on distance measure:

&
K

el

distance.P /
o® ¢

£

e distance of p and g w.r.t. p: \/(D—Q)°Vp ) E;) ‘VpT (p_q)T

e distance of pand g w.r.t. g: \/(q — p)-Vq ‘ E(; ‘VqT (q — p)T
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4C: correlation neighbors
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LMU

e symmetry of distance measure by choosing the maximum:

e pand g are correlation-neighbors if

J(p-a)-v,-E, V] (p-q).,
@-p)V, E -V (- p)

max-

Knowledge Discovery in Databases Il: High-Dimensional Data

N

J




algorithm 4C(D, =, p, A, )

// assumption: each object in D is marked as unclassified

for each unclassified O € D do

STEP 1. test Core52r (O) predicate:

compute N (O);
if IN2(0)] = ju then
compute Mao;
if CorDiM(N=(O)) < A then

compute Mg and N0 (0);
test N2 0 (0)] >

STEP 2.1. if Core§?* (O) expand a new cluster:

generate new clusterlD;
insert all X ENFO () into queue &;
while & £ () do
() = first object in &; i 0
compute R = {X € D|DirREACHTT (Q, X ) }; i o
for each X € R do E
if X is unclassified or noise then
assign current clusterlD to X
if X is unclassified then
insert X into &;
remove () from &,

STEP 2.2. if not Core5™” (O) O is noise:

mark O as noise;

end.
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4C vs. DBSCAN
¢~ Cluster found Clusters found
\ _' by DBSCAN by 4C
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4C: discussion

DATABASE
GROUP

e finds arbitrary number of clusters

e requires specification of density-thresholds

— U (minimum number of points): rather intuitive
— ¢ (radius of neighborhood): hard to guess

e biased to maximal dimensionality A of correlation clusters
(user specified)

e instance-based locality assumption: correlation distance measure
specifying the subspace is learned from local neighborhood of
each point in the d-dimensional space

enhancements also based on PCA:
e COPAC [ABK+07c] and
e ERIC [ABK+07b]

Knowledge Discovery in Databases Il: High-Dimensional Data
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Correlation clustering: Discussion

LMU

PCA: mature technique, allows construction of a broad range of
similarity measures for local correlation of attributes

drawback: all approaches suffer from locality assumption

successfully employing PCA in correlation clustering in “really”
high-dimensional data requires more effort henceforth

Knowledge Discovery in Databases Il: High-Dimensional Data
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Clustering High Dimensional Data:
Discussion 1/2

LMU

e Finding clusters in (arbitrarily oriented) subspaces of the original

feature space.

e The subspace (where the cluster exists) is part of the cluster

definition.

e The challenge is 2-fold: finding the correct subspace for each

cluster and the correct cluster in each relevant subspace

— Integrate subspace search in the clustering process

e Traditional full dimensional clustering paradigms transferred in the

high dimensional space.

Knowledge Discovery in Databases Il: High-Dimensional Data
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Clustering High Dimensional Data:

Discussion 2/2 LMU

e Different types of methods

Bottom-Up approaches: Subspace Clustering
O Find clusters in all subspaces
O Restrict the search space by downward closure property
O Axis-parallel subspaces
0 CLIQUE [AGGR98], SUBCLU [KKKO04]
Top-Down Approaches: Projected Clustering
0 Each point is assigned to one subspace cluster or noise.
O Subspaces are discovered based on the locality (cluster-based, instance-based)
O Axis-parallel subspaces
0 PROCLUS [APW+99], PREDECON[BKKKO04]
Top-Down Approaches: Correlation Clustering
0 Each point is assigned to one subspace cluster or noise.
O Subspace are discovered based on the locality (cluster-based, instance-based)
O Arbitrary oriented subspaces
O ORCLUS[AYO00], 4C [BKKZ04]

Pattern based clustering

Knowledge Discovery in Databases II: High-Dimensional Data
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Correlation clustering - Use Hough
ssews | Transformation to determine Clusters LMU

GROUP

e Hough-Transformation
Known from image analysis (finds geometric primitives lines, circles..)
in 2D pixel images

e Extension to arbitrary dimensions

e Transfers clustering into a new space
(“parameter space” of the Hough transform)

e reduces the search space from not countable infinity to O(n!)
e Common search heuristic is full enumeration
=> For efficient clustering a better heuristic is necessary!!

Zimek: Correlation Clustering
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Hough-Transformation

e Given: D — IR®

e target: linear subspaces, containing many points x

in the parameters space

P>

W

LMU

XeD
Idea: Maps points from the data space (picture space) to functions

)
/, P3
.fpz I ° "
/; P ° o
(‘2;955)
parameter space ac
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s | d-dimensional Polar Coordinates

GROUP

* &, 1 <1 <d: Orthonormal basis

¢ X =(Xy...,Xg)": d-dimensional Vector on the hyper sphere around
the origin with radius r

* U;: unity vector in the direction of the projection of X to the
subspace span(e;,...,ey)

* oy,...,04.1: & angle between u; and €;

-1

7 %=1 [Tsin(a;)|-cos(es)

j=1
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Correlation Clustering Algorithms

DATABASE |
GROUP

e points in data space are mapped to functions in the parameter
space

V4 S
~8 e
e :
< ps -/lh
]’) f!’_
) 5
;".’ "
J}‘ l’l /
g\g . (,5,)
SN .

picture space & parameter space &

fp(al,...,ad_l):<p,n> :izdl: p; - ﬁsin(aj) .cos(a; )

e functions in the parameter space define all lines possibly crossing
the point in the data space

Knowledge Discovery in Databases II: High-Dimensional Data
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Properties of the transformation

LMU

e Pointin the data space = sinusoidal curve in parameter space

e Pointin parameter space = hyper-plane in data space

e Points on a common hyper-plane in data space = sinusoidal curves
through a common point in parameter space

e [ntersections of sinusoidal curves in parameter space = hyper-plane
through the corresponding points in data space

b
L ]

Knowledge Discovery in Databases Il:

e
0 | o /

(@ .,a;,8°)
1 2 o

oy 8 T——
/z"’ _“"'*—-_.__:? 0
3“"“2*%7_%_7 -
X e “T!—«TT‘/'{’/I{ a,

a,
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Correlation Clustering based on the

ssews | Hough-Transformation LMIU
e Dense regionin parameter space & T
lineare regions in the data space 1o
(hyper planes wherer A <d-1) L. D
e Exact solutions: Determine all Intersections | ’ |
— Computation too expensive i bt |

— Too exact to find linear clusters

e approximative solution: gridbased
clustering in parameter spaces

)

— determine grid cells intersecting at least
M sinusoids gy
— Search space is finite but in O(r9) 2

dense region

— Cluster quality depends on the resolutio r o8 o0k sonsefagion
(Auflésung des Grids) cluster C2

o
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Correlation Clustering Algorithms

DATABASE
GROUP

ldea: find dense regions in parameter space

e construct a grid by recursively splitting the parameter space (best-
first-search)

e identify dense grid cells as intersected by many parametrization
functions

e dense grid represents (d-1)-dimensional linear structure

e transform corresponding data objects in corresponding (d-1)-
dimensional space and repeat the search recursively

Knowledge Discovery in Databases Il: High-Dimensional Data
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Algorithmus CASH:
wrews | effiziente Suchheuristik LMU

GROUP

CASH: Clustering in Arbitrary Subspaces based on the Hough-
Transform []

e Parameter space is recursively partitioned per axis in a predefined
order [y, ..., Oy.4, O]

e Select the hyper rectangle representing the most points to
continue (Best-First Search)
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Algorithm CASH:
v | efficient search heuristics MU

GROUP

e Hyper rectangle representing less than m points can be pruned
from the search space — early determination of the search path

e Hyper rectangles intersecting at least m sinusoids after S recursive
partitionings represent correlation clusters (where A <d-1)
— Cluster points (i.e. sinusoids) are removed from any other hyper rectangle

— To detect correlation clusters in subspaces with 4 <d-2 :
recursive processing of the cluster after transformation into the
corresponding d-1-dimensional subspace

Zimek: Correlation Clustering 70
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Algorithmus CASH:
Characateristics LMU

Detects an arbitrary amount of cluster

Required input:

— search depth (number of splits << maximal size of a cluster cell/accuracy)
— minimal density of a cell (<< minimal number of point in a cluster)

Density of a cell is not based on the “locality assumption”
=> method for global correlation clustering
In average the search heuristic scales with ~ d3

BUT: worst case runtime degenerates to exhaustive search
(exponential growth in d)
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Correlation Clustering Algorithms

LMU

properties:

finds arbitrary number of clusters
requires specification of depth of search (number of splits per axis)
requires minimum density threshold for a grid cell

Note: this minimum density does not relate to the locality
assumption: CASH is a global approach to correlation clustering

search heuristic: linear in number of points, but ~ d*
But: complete enumeration in worst case (exponential in d)
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Pattern-based clustering

GROUP

e Pattern-based clustering algorithms depict the data as a matrix
— A =(X,Y) with set of rows X and set of columns Y
— a,,is the element in row x and column y.

— submatrix A, = (1,J) with subset of rows | € X and subset of columnsJ c Y
contains those elements a; withi e lundj € J

Y
Axy__' v ] ‘J:{y’j}
i
X x Ay

L N

| = {ix} a
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Pattern-based clustering: Problem definition

DATABASE |
GROUP

Find a set of submatrices {(I,,,),(1,,J,),...,(1,,,)} of the matrix
A=(X,Y) (with I, Xand J,c Y fori=1,...,k) where each submatrix
(= bicluster) meets a given homogeneity criterion.
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e Some values often used by bicluster

models:
— mean of row i:

SRR

jed

— mean of column j:

Pattern-based clustering: criteria

MU

mean of aII elements:

> a;

IJ
‘ H‘] iel,jed

mza“

jed

Za

iel

Knowledge Discovery in Databases II: High-Dimensional Data
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Pattern-based clustering: Biclusters types

Different types of biclusters (cf. [MOO04]):
e constant biclusters

e biclusters with

— constant values on columns
— constant values on rows

LMU

e biclusters with coherent values (aka. pattern-based clustering)

e biclusters with coherent evolutions

Knowledge Discovery in Databases II: High-Dimensional Data
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Constant biclusters

DATABASE

GROUP

e All points share identical value in selected attributes.

e The constant value pu is a typical value for the cluster.

* Cluster model: a; = u

e Obviously a special case of an axis-parallel subspace cluster.

e Example: embedding 3-dimensional space 22
f |
al a2 a3
P1 1 1 35 3 -
P2 1 1 2.3 2 W *
z —] : . 1
: * 2
y i e 2
P4 | 1 i ok g
i I | o a1
1 2 3
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e Example: 2-dimensional subspace:

Constant biclusters: Examples

al

a2

F1

P2

P4

a2

LMU

e points located on the bisecting line of participating attributes
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Constant biclusters: Examples

DATABASE
GROUP

e Example: transposed view of attributes:

val ue
i
al =P a3 F1
p1 | 1 1 | 35 3 —
=
Pg 1 1 | 23 5
Y E 1 | 07 1 3 : i
w3, attribute
al a2 a3

e pattern: identical constant lines
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Constant biclusters: Discussion
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GROUP

e Real-world constant biclusters will not be perfect
e cluster model relaxes to: d; = A

e Optimization on matrix A = (X,Y) may lead to | X|-]|Y| singularity-biclusters

each containing one entry.
e Challenge: Avoid this kind of overfitting.
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Biclusters with constant values on columns

Cluster model for A, = (1,J):

MU

Viel, el

adjustment value c; for column j € J
results in axis-parallel subspace clusters

Knowledge Discovery in Databases II: High-Dimensional Data
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Biclusters with constant values on columns: Example

'S 4i¢l2
LMU

e Example: 3-dimensional embedding space

al a2 a3

F1 1 2 3.5

P2 1 2 23

P4 1 2 a.7

Knowledge Discovery in Databases II: High-Dimensional Data
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F1

P2

P4

Il RO BRI R

al
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Biclusters with constant values on columns: Example

'S 5
LMU

e Example: transposed view of attributes:

al a2 a3
P1 1 2 3.5
P2 1 . >
P4 1 2 0.7

e pattern: identical lines

val ue
i
P1
3 _
P2
2 ]

F3 e attribute

| —T
al a2 a3
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i = Mt
Viel, el

adjustment value r; for row i € |

Biclusters with constant values on rows

Cluster model for A, = (1,J):

LMU

Knowledge Discovery in Databases II: High-Dimensional Data
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Biclusters with constant values on rows: Examples
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e Example: 3-dimensional embedding space:

al a2 a3
P1 1 1 3.5
P2 2 2 >3

F4 4 4 0.7

e inthe embedding space, points build a sparse hyperplane parallel
to irrelevant axes
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Biclusters with constant values on rows: Examples
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GROUP

e example — 2-dimensional subspace:

a2
i
al a. 4 — &
P 1 1
P 2 2 3
| g ] 2_ 9
P4 4 4
1 I
T | | T - at

e points are accommodated on the bisecting line of participating
attributes
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Biclusters with constant values on rows: Examples
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e example — transposed view of attributes:

value
1 2 3
4 2| 2| 4 n
P1 1 1 35 =
P2 2 2 @3 3 -
= : 0.2 5 R
P4 4 4 0.7
1= P4
R _
| — p attribute

e pattern: parallel constant lines

Knowledge Discovery in Databases II: High-Dimensional Data
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Biclusters with coherent values

DATABASE |

GROUP

e based on a particular form of covariance between rows and
columns

a; = [+ +C,
Viel,jel

e special cases:
— ¢;=0forall;j — constant values on rows
— r;=0for all i = constant values on columns
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Biclusters with coherent values: Examples

DATABASE

GROUP

e embedding space: sparse hyperplane parallel to axes of irrelevant

attributes
a2
al az a3
F1 1 - a5
= 2 25

P4 & b 0.7
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Biclusters with coherent values: Examples

e subspace: increasing one-dimensional line

a2
i
al ad 6 _
P1 1
2 2 5 - :
: 4 _
P4 5 =
3 o
2 — ]
1

MU
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Biclusters with coherent values: Examples

e transposed view of attributes: value

i

B _

5

al a2 ad

P11 2 | 35 4 —

P2 2 3 2.5 3 _

F4 5 b 0.7 2 —

1 —

LMU

p attribute

e pattern: parallel lines
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Biclusters with coherent evolutions

IMU

e For all rows, all pairs of attributes change simultaneously

— discretized attribute space: coherent state-transitions
— change in same direction irrespective of the quantity

NN
"4
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Challenges and Approaches, Basic Models

LMU

e Approaches with coherent state-transitions: [TSS02,MKO03]
e reduces the problem to grid-based axis-parallel approach:

al a2 a3
P1 05 1.5 3.5
P2 07 1.3 >
P4 038 21 0.7
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Challenges and Approaches, Basic Models

al a2
F1 0 +
P2 0 +
F4 O +
a2
A
/
3 |
2 —
1
"-."_-‘_"\-\—\_‘v_'_,_ﬂ"'

LMU

al a2 a3
P1 05 1.5 3.5
P2 07 1.3 >

P4 08 | =24 a.7

value
i
Fl"|
3 _
* =,
2_
! g
D{ ¥ N
— 13 . attribute
al a2 a3

pattern: all lines cross border between
states (in the same direction)
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Challenges and Approaches, Basic Models

GROUP

e change in same direction — general idea: find a subset of rows and
columns, where a permutation of the set of columns exists such
that the values in every row are increasing

e clusters do not form a subspace but rather half-spaces

e related approaches:

— quantitative association rule mining [Web01,RRK04,GRRKO5]
— adaptation of formal concept analysis [GW99] to numeric data [Pfa07]
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e example — 3-dimensional embedding space

Challenges and Approaches, Basic Models

IMU

al a2 a3
P1 05 1.5 3.5
P2 07 1.3 >
P4 18 21 0.7

Knowledge Discovery in Databases II: High-Dimensional Data




e example — 2-dimensional subspace

al =W
P 05 148
P i.# |
P3 3 | 65
P4 18 | 21

al
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Challenges and Approaches, Basic Models
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e example — transposed view of attributes

val ue
al az a3
F1
F1 05 1.5 3.5 3 _
=, o7 13 23
= 0.3 | 1.2 2 (=
F4 18 21 a7 1
& _ P4
| : y F3 e attribute
al a2 a3

e pattern: all lines increasing
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Matrix-Pattern

a»

A

specialized

more

more
general

no change of values

change of values

only on
columns
or only
on rows

change of values
by same quantity

Challenges and Approaches, Basic Models

Bicluster Model

Constant Bicluster

/ axis-parallel

Constant Columns

Constant Rows

Coherent Values

(shifted pattern)

change of values
v 1n same direction

Coherent Evolutions

Knowledge Discovery in Databases Il: High-Dimensional Data

LMU

Spatial Pattern
axis-parallel, located N
on bisecting line
: Ty
axis-parallel sparse =
hyperplane — projected §
T space: bisecting line ED
o
axis-parallel sparse hyperplane — g
projected space: increasing line 2
(positive correlation) =
state-transitions:
grid-based axis-parallel
change in same direction:
half-spaces (no classical *
cluster-pattern)
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e classical problem statement by Hartigan [Har72]

Algorithms for Constant Biclusters

quality measure for a bicluster: variance of the submatrix A;;:

VAR (A” )= Z (aij —a; )2

iel,jel

LMU

e avoids partitioning into |X|-|Y]| singularity-biclusters (optimizing the sum of
squares) by comparing the reduction with the reduction expected by chance

recursive split of data matrix into two partitions

e each split chooses the maximal reduction in the overall sum of squares for all
biclusters

Knowledge Discovery in Databases Il: High-Dimensional Data
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Biclusters with Constant Values
ssews | in Rows or Columns LMU

e simple approach: normalization to transform the biclusters into
constant biclusters and follow the first approach (e.g. [GLDOO])

e some application-driven approaches with special assumptions in
the bioinformatics community (e.g. [CSTO0,SMDO03,STG+01])

e constant values on columns: general axis-parallel
subspace/projected clustering

e constant values on rows: special case of general correlation
clustering

e both cases special case of approaches to biclusters with coherent
values

Knowledge Discovery in Databases Il: High-Dimensional Data 102



w

Algorithms for Biclusters Sk
s | with Coherent Values LMU

classical approach: Cheng&Church [CCOO0]

e introduced the term biclustering to analysis of gene expression data
e quality of a bicluster: mean squared residue value H

|
H(Ia‘]):_ Z(aij —aj; _alj +4a;
1355

e submatrix (l,J) is considered a bicluster, if H(l,J) < 0
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Algorithms for Biclusters
with Coherent Values

e 0 =0 - perfect bicluster:

— each row and column exhibits absolutely consistent bias

— bias of row i w.r.t. other rows: a” — d 1J

MU

* the model for a perfect bicluster predicts value a; by a row-constant, a
column-constant, and an overall cluster-constant:

a.

a,

=4 +a; —a

ﬁ“:au>ﬁ:%J‘%J”j:au‘a

[ =M+ +C
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Algorithms for Biclusters
with Coherent Values

e for a non-perfect bicluster, the prediction of the model deviates from the true

value by a residue:

I

e This residue is the optimization criterion:

|
H(I»‘J):_ Z(aij_aiJ_alj+alJ
“H‘] iel,jeld

Knowledge Discovery in Databases II: High-Dimensional Data

LMU.

105



w

DATABASE
SYSTEMS
GROUP

Algorithms for Biclusters

with Coherent Values LMU

The optimization is also possible for the row-residue of row i or
the column-residue of columnj.

Algorithm:

1. find a o -bicluster: greedy search by removing the row or column (or the set
of rows/columns) with maximal mean squared residue until the remaining
submatrix (1,J) satisfies H(l,J)< 0.

2. find a maximal o -bicluster by adding rows and columns to (1,J) unless this
would increase H.

3. replace the values of the found bicluster by random numbers and repeat
the procedure until k 0 -biclusters are found.
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Algorithms for Biclusters
with Coherent Values LMU

Weak points in the approach of Cheng&Church:

1.

One cluster at a time is found, the cluster needs to be masked in
order to find a second cluster.

This procedure bears an inefficient performance.
The masking may lead to less accurate results.

The masking inhibits simultaneous overlapping of rows and
columns.

Missing values cannot be dealt with.
The user must specify the number of clusters beforehand.
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p-cluster model [WWYY02]
e p-cluster model: deterministic approach

e specializes 0 -bicluster-property to a pairwise property of two
objects in two attributes:

‘(ailj1 —aj, )_ (ai2j1 — &, )‘ <o
difference = &

=

\

F1

A—

al aZ

e submatrix (l,J) is a 0 -p-cluster if this property is fulfilled for any
2x2 submatrix ({i, i,}, {j;, J,}) where {i;, i,} € | and {j, j,} €J.
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Algorithm:

1. create maximal set of attributes for each pair of objects forming a o -p-cluster
2. create maximal set of objects for each pair of attributes forming a 0 -p-cluster
3. pruning-step

4. search in the set of submatrices

P4

,.X
-
-

g
-

Problem: complete enumeration approach

Addressed issues:

1. multiple clusters simultaneously
4. allows for overlapping rows and columns
6. allows for arbitrary number of clusters

Related approaches:
FLOC [YWWY02],MaPle [PZC+03]

o—p
k
h,.
o
3

k|

-+
-
\R
W
-
4

b
. |

2
R

Knowledge Discovery in Databases Il: High-Dimensional Data 109



w

DATABASE
SYSTEMS
GROUP

Summary
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Biclustering models do not fit exactly into the spatial intuition
behind subspace, projected, or correlation clustering.

Models make sense in view of a data matrix.

Strong point: the models generally do not rely on the locality
assumption.

Models differ substantially = fair comparison is a non-trivial task.
Comparison of five methods: [PBZ+06]

Rather specialized task — comparison in a broad context
(subspace/projected/correlation clustering) is desirable.

Biclustering performs generally well on microarray data —for a
wealth of approaches see [MOO04].
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Summary and Perspectives
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comparison: correlation clustering — biclustering:

model for correlation clusters more general and meaningful
models for biclusters rather specialized

in general, biclustering approaches do not rely on locality
assumption

non-local approach and specialization of models may make
biclustering successful in many applications

correlation clustering is the more general approach but the
approaches proposed so far are rather a first draft to tackle the
complex problem
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