Temporal Relationships Among Clusters for Data Streams (TRACDS)

By Georg Eutermoser

Outline

- Problem
 - Problem Definition
 - Data Stream Clustering
- TRACDS
 - Markov Chains
 - TRACDS Framework
 - Implementation hints
- Experiments

Problem

- Data stream clustering
 looses temporal information
- This is important in many applications
 - Anomaly detection
 - Intrusion detection in networks

Credit cards:

- Use card and pay with it
- No usage, break for some time

... B B U B B B B U B B U U U

Clustering ζ

- Partitioning of data into k subsets C₁,...,C_k
- Hard clustering
- Minimized cost function $f_c(\zeta)$
- Points can be outliers

Data Stream Clustering ζ₊

- Clustering as defined before
- All data until t
- *k* can change over time
- Synopsis c_i for every Cluster C_i
 - Size
 - Distribution
 - Location

Outline

- Problem
 - Problem Definition
 - Data Stream Clustering

• TRACDS

- Markov Chains
- TRACDS Framework
- Implementation hints
- Experiments

Markov chains

- Sequence of random variables {X₇}=<X₁, X₂, ...>
- Same domain *dom(X)*=S=<s₁, s₂, s_k>
- Markov Property: $P(X_{t+1} = s_{t+1} | X_t = s_{t}, ..., X_1 = s_1)$ $= P(X_{t+1} = s_{t+1} | X_t = s_t) = a_{t,t+1}$

- S = {crapes, cheese, lettuce}
- Possible sequencies:
 - <crapes, lettuce, cheese>
 - <crapes,crapes,cheese,lettuce>
- Impossible sequence:
 - <lettuce,lettuce,crapes>

TRACDS - Idea

- MC can be displayed as transition matrix A
- Store into transition count matrix A
- A estimated with maximum likelihood:

$$a_{ij} = \frac{C_{ij}}{\sum_{i=0}^{k} c_{ij}}$$

$$C = \begin{pmatrix} 0 & 12 & 4 & 0 \\ 8 & 0 & 0 & 4 \\ 6 & 0 & 0 & 0 \\ 2 & 0 & 2 & 0 \end{pmatrix}$$

TRACDS Definition

TRACDS:
$$T = (\{1, 2, 3\}, C, 3)$$

$$\begin{array}{c} \frac{1}{4} & \frac{3}{4} & \frac{1}{4} \\ \frac{2}{3} & \frac{3}{4} & \frac{3}{4} & C = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

- Any clustering algorithm
- Clusters of the data stream as states of a MC
- Temporal information as transitions
- $T = (S, C, S_C)$
 - State space S with a state for each cluster
 - Transition count matrix C
 - $s_c = \text{current state}$

TRACDS Framework

Custering Operations

- 6 Clustering Operations: (assign, create, remove, merge, fade, split)
- Appropriate TRACDS Operations r: $T_{t+1} = r(T_t, y)$:
 - $\mathbf{r}_{assign}(T_t, \mathbf{y})$:
 - $y = s_i$, the state of the cluster
 - Update C: $c_{sc,si} = c_{sc,si} + 1$
 - $\mathbf{r}_{\text{create}}(T_t, \mathbf{y})$:
 - y is empty
 - Add new state to S; Enlarge C

Custering Operations

- Appropriate TRACDS Operations (Continued):
 - $\mathbf{r}_{\text{remove}}(\mathcal{T}_t, \mathbf{y})$:
 - $y = s_i$, state of the removed cluster
 - Remove state from S; Reduce C
 - $\mathbf{r}_{\text{merge}}(T_t, \mathbf{y})$:
 - $y = s_i$, s_i , states of the two merged clusters
 - merge states in S; Reduce C
 - $r_{fade}(T_t, y), r_{split}(T_t, y)$: depends on Clustering algorithm

Example Clustering Operations

Cluster	TRACDS	Manipulation	s_c
assignment	operation	of \mathbf{C}	
	initial	\mathbf{C} is 0×0	ϵ
1	rnew cluster	expand \mathbf{C} to 1×1	
ö	rassign point	no manipulation	1
2	rnew cluster	expand C to 2×2	
5	rassign point	$c_{1,2} \leftarrow c_{1,2} + 1$	2
3	$r_{new \ cluster}$	expand C to 3×3	
	r _{assign} point	$c_{2,3} \leftarrow c_{2,3} + 1$	3
2	rassign point	$c_{3,2} \leftarrow c_{3,2} + 1$	2
3	rassign point	$c_{2,3} \leftarrow c_{2,3} + 1$	3
4	rnew cluster	expand \mathbf{C} to 4×4	
5	rassign point	$c_{3,4} \leftarrow c_{3,4} + 1$	4
4	<i>r</i> assign point	$c_{4,4} \leftarrow c_{4,4} + 1$	4
2	Tassign point	$c_{4,2} \leftarrow c_{4,2} + 1$	2
3	r _{assign} point	$c_{2,3} \leftarrow c_{2,3} + 1$	3
4	r _{assign} point	$c_{3,4} \leftarrow c_{3,4} + 1$	4

Implementation

- TRACDS seperatly from Clustering algorithm
- Lightweight interface: Clustering Operations
- C as array $k' \times k'$ with $k' \ge k$: space $O(k'^2)$
 - assign O(1)
 - merge, remove, create: O(k)
 - Fading, Reordering: O(k²)
- Computational complexity:
 - Depends on amount of clustering operations
 - Neglegible compared to clustering Operation

Outline

- Problem
 - Problem Definition
 - Data Stream Clustering
- TRACDS
 - Markov Chains
 - TRACDS Framework
 - Implementation hints
- **Experiments**

Experiment – Artificial Data

- 2-Dimensional data stream
- Anomalies in its order, shown as X

Real World Data Sets

ROC curves for the KDD-99 data set.

Averaged ROC curves for 10 runs of the 16SrRNA data set.

Conclusion and Future Work

- Advantages:
 - Temporal order stored
 - Independent of Clustering algorithm
- Disadvantage:
 - Much space for transition matrix
- Future work:
 - Better structures as model
 - Prediction of missing values in a stream
 - Better evaluation of dissimilarities

END Thank you for your attention.

20.11.12

Temporal Relationships Among Clusters for Data Streams