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Problem
● Data stream clustering 

looses temporal information
● This is important in many 

applications
● Anomaly detection
● Intrusion detection in 

networks Credit cards:
  - Use card and pay with it
  - No usage, break for some time

... B B U B B B B U B B U U U
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Clustering ζ
● Partitioning of data into k 

subsets C1,...,Ck

● Hard clustering

● Minimized cost function fc(ζ)

● Points can be outliers
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Data Stream Clustering ζt

● Clustering as defined before
● All data until t
● k can change over time
● Synopsis ci for every Cluster Ci

● Size
● Distribution
● Location
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Markov chains

● Sequence of random 
variables {XT}=<X1, X2, ...>

● Same domain 
dom(X)=S=<s1, s2, sk>

● Markov Property: 
P(Xt+1=st+1|Xt=st, ... , X1=s1) 
= P(Xt+1=st+1|Xt=st) = at,t+1

● S = {crapes, cheese, lettuce}
● Possible sequencies:

● <crapes, lettuce, cheese>
● <crapes,crapes,cheese,lettuce>

● Impossible sequence:
● <lettuce,lettuce,crapes>
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0.4
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TRACDS - Idea
● MC can be displayed as 

transition matrix A
● Store into transition count 

matrix A
● A estimated with maximum 

likelihood:
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2 0 2 0
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TRACDS Definition

● Any clustering algorithm
● Clusters of the data stream 

as states of a MC
● Temporal information as 

transitions
● T = (S,C,sC)

● State space S with a state for 
each cluster

● Transition count matrix C
● sc = current state

Stream:

Clustering:

TRACDS: T = ({1,2,3}, C, 3)

C=1 1 0
0 0 1
0 0 0
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TRACDS Framework

Stream:
…

Clustering
Algorithm TRACDSInterface to

TRACDS

Out
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Custering Operations
● 6 Clustering Operations:                                                    

(assign, create, remove, merge, fade, split)

● Appropriate TRACDS Operations  r: Tt+1=r(Tt,y):

●  rassign(Tt, y):

– y = si, the state of the cluster

– Update C: csc,si = csc,si + 1

● rcreate(Tt, y):

– y is empty
– Add new state to S; Enlarge C
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Custering Operations

● Appropriate TRACDS Operations  (Continued):
●  rremove(Tt, y):

– y =si, state of the removed cluster

– Remove state from S; Reduce C
● rmerge(Tt, y):

– y =si, sj, states of the two merged clusters

– merge states in S; Reduce C
● rfade(Tt, y), rsplit(Tt, y): depends on Clustering algorithm
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Example Clustering Operations
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Implementation
● TRACDS seperatly from Clustering algorithm
● Lightweight interface: Clustering Operations
● C as array k' x k' with k' ≥ k: space O(k'²)

● assign O(1)
● merge, remove, create: O(k)
● Fading, Reordering: O(k²)

● Computational complexity:
● Depends on amount of clustering operations
● Neglegible compared to clustering Operation
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Experiment – Artificial Data
● 2-Dimensional data stream
● Anomalies in its order, shown as X
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Real World Data Sets

ROC curves for the KDD-99 data set. Averaged ROC curves for 10 runs of the 
16SrRNA data set.
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Conclusion and Future Work
● Advantages:

● Temporal order stored
● Independent of Clustering algorithm

● Disadvantage:
● Much space for transition matrix

● Future work:
● Better structures as model
● Prediction of missing values in a stream
● Better evaluation of dissimilarities
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END
Thank you for your attention.
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